Spaces:
Sleeping
Sleeping
""" | |
File: model.py | |
Author: Elena Ryumina and Dmitry Ryumin | |
Description: This module provides functions for loading and processing a pre-trained deep learning model | |
for facial expression recognition. | |
License: MIT License | |
""" | |
import torch | |
import requests | |
from PIL import Image | |
from torchvision import transforms | |
from pytorch_grad_cam import GradCAM | |
# Importing necessary components for the Gradio app | |
from app.config import config_data | |
from app.model_architectures import ResNet50, LSTMPyTorch | |
def load_model(model_url, model_path): | |
try: | |
with requests.get(model_url, stream=True) as response: | |
with open(model_path, "wb") as file: | |
for chunk in response.iter_content(chunk_size=8192): | |
file.write(chunk) | |
return model_path | |
except Exception as e: | |
print(f"Error loading model: {e}") | |
return None | |
path_static = load_model(config_data.model_static_url, config_data.model_static_path) | |
pth_model_static = ResNet50(7, channels=3) | |
pth_model_static.load_state_dict(torch.load(path_static)) | |
pth_model_static.eval() | |
path_dynamic = load_model(config_data.model_dynamic_url, config_data.model_dynamic_path) | |
pth_model_dynamic = LSTMPyTorch() | |
pth_model_dynamic.load_state_dict(torch.load(path_dynamic)) | |
pth_model_dynamic.eval() | |
target_layers = [pth_model_static.layer4] | |
cam = GradCAM(model=pth_model_static, target_layers=target_layers) | |
def pth_processing(fp): | |
class PreprocessInput(torch.nn.Module): | |
def init(self): | |
super(PreprocessInput, self).init() | |
def forward(self, x): | |
x = x.to(torch.float32) | |
x = torch.flip(x, dims=(0,)) | |
x[0, :, :] -= 91.4953 | |
x[1, :, :] -= 103.8827 | |
x[2, :, :] -= 131.0912 | |
return x | |
def get_img_torch(img, target_size=(224, 224)): | |
transform = transforms.Compose([transforms.PILToTensor(), PreprocessInput()]) | |
img = img.resize(target_size, Image.Resampling.NEAREST) | |
img = transform(img) | |
img = torch.unsqueeze(img, 0) | |
return img | |
return get_img_torch(fp) | |