Spaces:
Running
on
Zero
Running
on
Zero
ZhengPeng7
commited on
Add fast-foreground-estimation in masking image.
Browse files
app.py
CHANGED
@@ -23,6 +23,40 @@ torch.jit.script = lambda f: f
|
|
23 |
|
24 |
device = "cuda" if torch.cuda.is_available() else "CPU"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image:
|
28 |
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
|
@@ -114,19 +148,16 @@ def predict(images, resolution, weights_file):
|
|
114 |
if device == 'cuda':
|
115 |
scaled_pred_tensor = scaled_pred_tensor.cpu()
|
116 |
|
117 |
-
#
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
image_pil = image_pil.resize(pred.shape[::-1])
|
122 |
-
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
|
123 |
-
image_masked = (pred * np.array(image_pil)).astype(np.uint8)
|
124 |
|
125 |
torch.cuda.empty_cache()
|
126 |
|
127 |
if tab_is_batch:
|
128 |
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))
|
129 |
-
|
130 |
save_paths.append(save_file_path)
|
131 |
|
132 |
if tab_is_batch:
|
|
|
23 |
|
24 |
device = "cuda" if torch.cuda.is_available() else "CPU"
|
25 |
|
26 |
+
### image_proc.py
|
27 |
+
def refine_foreground(image, mask, r=90):
|
28 |
+
if mask.size != image.size:
|
29 |
+
mask = mask.resize(image.size)
|
30 |
+
image = np.array(image) / 255.0
|
31 |
+
mask = np.array(mask) / 255.0
|
32 |
+
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
|
33 |
+
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
|
34 |
+
return image_masked
|
35 |
+
|
36 |
+
|
37 |
+
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
|
38 |
+
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
|
39 |
+
alpha = alpha[:, :, None]
|
40 |
+
F, blur_B = FB_blur_fusion_foreground_estimator(
|
41 |
+
image, image, image, alpha, r)
|
42 |
+
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]
|
43 |
+
|
44 |
+
|
45 |
+
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
|
46 |
+
if isinstance(image, Image.Image):
|
47 |
+
image = np.array(image) / 255.0
|
48 |
+
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]
|
49 |
+
|
50 |
+
blurred_FA = cv2.blur(F * alpha, (r, r))
|
51 |
+
blurred_F = blurred_FA / (blurred_alpha + 1e-5)
|
52 |
+
|
53 |
+
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
|
54 |
+
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
|
55 |
+
F = blurred_F + alpha * \
|
56 |
+
(image - alpha * blurred_F - (1 - alpha) * blurred_B)
|
57 |
+
F = np.clip(F, 0, 1)
|
58 |
+
return F, blurred_B
|
59 |
+
|
60 |
|
61 |
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image:
|
62 |
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
|
|
|
148 |
if device == 'cuda':
|
149 |
scaled_pred_tensor = scaled_pred_tensor.cpu()
|
150 |
|
151 |
+
# Show Results
|
152 |
+
pred_pil = transforms.ToPILImage()(pred)
|
153 |
+
image_masked = refine_foreground(image, pred_pil)
|
154 |
+
image_masked.putalpha(pred_pil.resize(image.size))
|
|
|
|
|
|
|
155 |
|
156 |
torch.cuda.empty_cache()
|
157 |
|
158 |
if tab_is_batch:
|
159 |
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))
|
160 |
+
image_masked.save(save_file_path)
|
161 |
save_paths.append(save_file_path)
|
162 |
|
163 |
if tab_is_batch:
|