Debug app.py
Browse files
app.py
CHANGED
@@ -1115,10 +1115,10 @@ def predict(img):
|
|
1115 |
vflip_tta = VerticalFlip()
|
1116 |
|
1117 |
img_name = img.name
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
|
1123 |
img_data = pred_transforms(img_name)
|
1124 |
img_data = img_data.to(device)
|
@@ -1128,7 +1128,7 @@ def predict(img):
|
|
1128 |
overlap = 0.5
|
1129 |
else:
|
1130 |
overlap = 0.6
|
1131 |
-
|
1132 |
with torch.no_grad():
|
1133 |
img0 = img_data
|
1134 |
outputs0 = sliding_window_inference(
|
@@ -1231,14 +1231,15 @@ def predict(img):
|
|
1231 |
outputs = outputs0
|
1232 |
|
1233 |
pred_mask = post_process(outputs.squeeze(0).cpu().numpy(), device)
|
1234 |
-
|
1235 |
file_path = os.path.join(
|
1236 |
os.getcwd(), img_name.split(".")[0] + "_label.tiff"
|
1237 |
)
|
1238 |
|
1239 |
tif.imwrite(file_path, pred_mask, compression="zlib")
|
|
|
1240 |
# return img_data, seg_rgb, join(os.getcwd(), 'segmentation.tiff')
|
1241 |
-
return
|
1242 |
|
1243 |
demo = gr.Interface(
|
1244 |
predict,
|
|
|
1115 |
vflip_tta = VerticalFlip()
|
1116 |
|
1117 |
img_name = img.name
|
1118 |
+
if img_name.endswith('.tif') or img_name.endswith('.tiff'):
|
1119 |
+
origin_img = tif.imread(img_name)
|
1120 |
+
else:
|
1121 |
+
origin_img = io.imread(img_name)
|
1122 |
|
1123 |
img_data = pred_transforms(img_name)
|
1124 |
img_data = img_data.to(device)
|
|
|
1128 |
overlap = 0.5
|
1129 |
else:
|
1130 |
overlap = 0.6
|
1131 |
+
print("start")
|
1132 |
with torch.no_grad():
|
1133 |
img0 = img_data
|
1134 |
outputs0 = sliding_window_inference(
|
|
|
1231 |
outputs = outputs0
|
1232 |
|
1233 |
pred_mask = post_process(outputs.squeeze(0).cpu().numpy(), device)
|
1234 |
+
print("prediction end & file write")
|
1235 |
file_path = os.path.join(
|
1236 |
os.getcwd(), img_name.split(".")[0] + "_label.tiff"
|
1237 |
)
|
1238 |
|
1239 |
tif.imwrite(file_path, pred_mask, compression="zlib")
|
1240 |
+
print(np.max(pred_mask))
|
1241 |
# return img_data, seg_rgb, join(os.getcwd(), 'segmentation.tiff')
|
1242 |
+
return origin_img, pred_mask, file_path
|
1243 |
|
1244 |
demo = gr.Interface(
|
1245 |
predict,
|