|
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin` |
|
|
|
Attributes: |
|
|
|
_out_channels (list of int): specify number of channels for each encoder feature tensor |
|
_depth (int): specify number of stages in decoder (in other words number of downsampling operations) |
|
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3) |
|
|
|
Methods: |
|
|
|
forward(self, x: torch.Tensor) |
|
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of |
|
shape NCHW (features should be sorted in descending order according to spatial resolution, starting |
|
with resolution same as input `x` tensor). |
|
|
|
Input: `x` with shape (1, 3, 64, 64) |
|
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes |
|
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8), |
|
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ) |
|
|
|
also should support number of features according to specified depth, e.g. if depth = 5, |
|
number of feature tensors = 6 (one with same resolution as input and 5 downsampled), |
|
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled). |
|
""" |
|
from copy import deepcopy |
|
|
|
import torch.nn as nn |
|
|
|
from torchvision.models.resnet import ResNet |
|
from torchvision.models.resnet import BasicBlock |
|
from torchvision.models.resnet import Bottleneck |
|
from pretrainedmodels.models.torchvision_models import pretrained_settings |
|
|
|
from ._base import EncoderMixin |
|
|
|
|
|
class ResNetEncoder(ResNet, EncoderMixin): |
|
def __init__(self, out_channels, depth=5, **kwargs): |
|
super().__init__(**kwargs) |
|
self._depth = depth |
|
self._out_channels = out_channels |
|
self._in_channels = 3 |
|
|
|
del self.fc |
|
del self.avgpool |
|
|
|
def get_stages(self): |
|
return [ |
|
nn.Identity(), |
|
nn.Sequential(self.conv1, self.bn1, self.relu), |
|
nn.Sequential(self.maxpool, self.layer1), |
|
self.layer2, |
|
self.layer3, |
|
self.layer4, |
|
] |
|
|
|
def forward(self, x): |
|
stages = self.get_stages() |
|
|
|
features = [] |
|
for i in range(self._depth + 1): |
|
x = stages[i](x) |
|
features.append(x) |
|
|
|
return features |
|
|
|
def load_state_dict(self, state_dict, **kwargs): |
|
state_dict.pop("fc.bias", None) |
|
state_dict.pop("fc.weight", None) |
|
super().load_state_dict(state_dict, **kwargs) |
|
|
|
|
|
new_settings = { |
|
"resnet18": { |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet18-d92f0530.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet18-118f1556.pth", |
|
}, |
|
"resnet50": { |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnet50-08389792.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnet50-16a12f1b.pth", |
|
}, |
|
"resnext50_32x4d": { |
|
"imagenet": "https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth", |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext50_32x4-ddb3e555.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext50_32x4-72679e44.pth", |
|
}, |
|
"resnext101_32x4d": { |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x4-dc43570a.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x4-3f87e46b.pth", |
|
}, |
|
"resnext101_32x8d": { |
|
"imagenet": "https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth", |
|
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x8-c38310e5.pth", |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x8-2cfe2f8b.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x8-b4712904.pth", |
|
}, |
|
"resnext101_32x16d": { |
|
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x16-c6f796b0.pth", |
|
"ssl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_supervised_resnext101_32x16-15fffa57.pth", |
|
"swsl": "https://dl.fbaipublicfiles.com/semiweaksupervision/model_files/semi_weakly_supervised_resnext101_32x16-f3559a9c.pth", |
|
}, |
|
"resnext101_32x32d": { |
|
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x32-e4b90b00.pth", |
|
}, |
|
"resnext101_32x48d": { |
|
"instagram": "https://download.pytorch.org/models/ig_resnext101_32x48-3e41cc8a.pth", |
|
}, |
|
} |
|
|
|
pretrained_settings = deepcopy(pretrained_settings) |
|
for model_name, sources in new_settings.items(): |
|
if model_name not in pretrained_settings: |
|
pretrained_settings[model_name] = {} |
|
|
|
for source_name, source_url in sources.items(): |
|
pretrained_settings[model_name][source_name] = { |
|
"url": source_url, |
|
"input_size": [3, 224, 224], |
|
"input_range": [0, 1], |
|
"mean": [0.485, 0.456, 0.406], |
|
"std": [0.229, 0.224, 0.225], |
|
"num_classes": 1000, |
|
} |
|
|
|
|
|
resnet_encoders = { |
|
"resnet18": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnet18"], |
|
"params": { |
|
"out_channels": (3, 64, 64, 128, 256, 512), |
|
"block": BasicBlock, |
|
"layers": [2, 2, 2, 2], |
|
}, |
|
}, |
|
"resnet34": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnet34"], |
|
"params": { |
|
"out_channels": (3, 64, 64, 128, 256, 512), |
|
"block": BasicBlock, |
|
"layers": [3, 4, 6, 3], |
|
}, |
|
}, |
|
"resnet50": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnet50"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 6, 3], |
|
}, |
|
}, |
|
"resnet101": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnet101"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
}, |
|
}, |
|
"resnet152": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnet152"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 8, 36, 3], |
|
}, |
|
}, |
|
"resnext50_32x4d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext50_32x4d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 6, 3], |
|
"groups": 32, |
|
"width_per_group": 4, |
|
}, |
|
}, |
|
"resnext101_32x4d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext101_32x4d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
"groups": 32, |
|
"width_per_group": 4, |
|
}, |
|
}, |
|
"resnext101_32x8d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext101_32x8d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
"groups": 32, |
|
"width_per_group": 8, |
|
}, |
|
}, |
|
"resnext101_32x16d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext101_32x16d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
"groups": 32, |
|
"width_per_group": 16, |
|
}, |
|
}, |
|
"resnext101_32x32d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext101_32x32d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
"groups": 32, |
|
"width_per_group": 32, |
|
}, |
|
}, |
|
"resnext101_32x48d": { |
|
"encoder": ResNetEncoder, |
|
"pretrained_settings": pretrained_settings["resnext101_32x48d"], |
|
"params": { |
|
"out_channels": (3, 64, 256, 512, 1024, 2048), |
|
"block": Bottleneck, |
|
"layers": [3, 4, 23, 3], |
|
"groups": 32, |
|
"width_per_group": 48, |
|
}, |
|
}, |
|
} |
|
|