ghlee94's picture
Init
2a13495
"""Each encoder should have following attributes and methods and be inherited from `_base.EncoderMixin`
Attributes:
_out_channels (list of int): specify number of channels for each encoder feature tensor
_depth (int): specify number of stages in decoder (in other words number of downsampling operations)
_in_channels (int): default number of input channels in first Conv2d layer for encoder (usually 3)
Methods:
forward(self, x: torch.Tensor)
produce list of features of different spatial resolutions, each feature is a 4D torch.tensor of
shape NCHW (features should be sorted in descending order according to spatial resolution, starting
with resolution same as input `x` tensor).
Input: `x` with shape (1, 3, 64, 64)
Output: [f0, f1, f2, f3, f4, f5] - features with corresponding shapes
[(1, 3, 64, 64), (1, 64, 32, 32), (1, 128, 16, 16), (1, 256, 8, 8),
(1, 512, 4, 4), (1, 1024, 2, 2)] (C - dim may differ)
also should support number of features according to specified depth, e.g. if depth = 5,
number of feature tensors = 6 (one with same resolution as input and 5 downsampled),
depth = 3 -> number of feature tensors = 4 (one with same resolution as input and 3 downsampled).
"""
import torch.nn as nn
from efficientnet_pytorch import EfficientNet
from efficientnet_pytorch.utils import url_map, url_map_advprop, get_model_params
from ._base import EncoderMixin
class EfficientNetEncoder(EfficientNet, EncoderMixin):
def __init__(self, stage_idxs, out_channels, model_name, depth=5):
blocks_args, global_params = get_model_params(model_name, override_params=None)
super().__init__(blocks_args, global_params)
self._stage_idxs = stage_idxs
self._out_channels = out_channels
self._depth = depth
self._in_channels = 3
del self._fc
def get_stages(self):
return [
nn.Identity(),
nn.Sequential(self._conv_stem, self._bn0, self._swish),
self._blocks[: self._stage_idxs[0]],
self._blocks[self._stage_idxs[0] : self._stage_idxs[1]],
self._blocks[self._stage_idxs[1] : self._stage_idxs[2]],
self._blocks[self._stage_idxs[2] :],
]
def forward(self, x):
stages = self.get_stages()
block_number = 0.0
drop_connect_rate = self._global_params.drop_connect_rate
features = []
for i in range(self._depth + 1):
# Identity and Sequential stages
if i < 2:
x = stages[i](x)
# Block stages need drop_connect rate
else:
for module in stages[i]:
drop_connect = drop_connect_rate * block_number / len(self._blocks)
block_number += 1.0
x = module(x, drop_connect)
features.append(x)
return features
def load_state_dict(self, state_dict, **kwargs):
state_dict.pop("_fc.bias", None)
state_dict.pop("_fc.weight", None)
super().load_state_dict(state_dict, **kwargs)
def _get_pretrained_settings(encoder):
pretrained_settings = {
"imagenet": {
"mean": [0.485, 0.456, 0.406],
"std": [0.229, 0.224, 0.225],
"url": url_map[encoder],
"input_space": "RGB",
"input_range": [0, 1],
},
"advprop": {
"mean": [0.5, 0.5, 0.5],
"std": [0.5, 0.5, 0.5],
"url": url_map_advprop[encoder],
"input_space": "RGB",
"input_range": [0, 1],
},
}
return pretrained_settings
efficient_net_encoders = {
"efficientnet-b0": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b0"),
"params": {
"out_channels": (3, 32, 24, 40, 112, 320),
"stage_idxs": (3, 5, 9, 16),
"model_name": "efficientnet-b0",
},
},
"efficientnet-b1": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b1"),
"params": {
"out_channels": (3, 32, 24, 40, 112, 320),
"stage_idxs": (5, 8, 16, 23),
"model_name": "efficientnet-b1",
},
},
"efficientnet-b2": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b2"),
"params": {
"out_channels": (3, 32, 24, 48, 120, 352),
"stage_idxs": (5, 8, 16, 23),
"model_name": "efficientnet-b2",
},
},
"efficientnet-b3": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b3"),
"params": {
"out_channels": (3, 40, 32, 48, 136, 384),
"stage_idxs": (5, 8, 18, 26),
"model_name": "efficientnet-b3",
},
},
"efficientnet-b4": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b4"),
"params": {
"out_channels": (3, 48, 32, 56, 160, 448),
"stage_idxs": (6, 10, 22, 32),
"model_name": "efficientnet-b4",
},
},
"efficientnet-b5": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b5"),
"params": {
"out_channels": (3, 48, 40, 64, 176, 512),
"stage_idxs": (8, 13, 27, 39),
"model_name": "efficientnet-b5",
},
},
"efficientnet-b6": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b6"),
"params": {
"out_channels": (3, 56, 40, 72, 200, 576),
"stage_idxs": (9, 15, 31, 45),
"model_name": "efficientnet-b6",
},
},
"efficientnet-b7": {
"encoder": EfficientNetEncoder,
"pretrained_settings": _get_pretrained_settings("efficientnet-b7"),
"params": {
"out_channels": (3, 64, 48, 80, 224, 640),
"stage_idxs": (11, 18, 38, 55),
"model_name": "efficientnet-b7",
},
},
}