Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import time | |
from dotenv import load_dotenv | |
from huggingface_hub import Repository | |
from huggingface_hub import login | |
load_dotenv() | |
login(token = os.environ['HF_TOKEN']) | |
repo = Repository( | |
local_dir="chatbot_function", | |
repo_type="dataset", | |
clone_from=os.environ['DATASET'], | |
token=True | |
) | |
repo.git_pull() | |
from chatbot_function.chatbot import answer | |
# Streamed response emulator | |
def response_generator(query): | |
ans = answer(query) | |
for word in ans.split(' '): | |
yield word + " " | |
time.sleep(0.05) | |
st.title("Nirvana Chatbot") | |
if 'conversation_id' not in st.session_state: | |
st.session_state['conversation_id'] = '' | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What is up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
response = st.write_stream(response_generator(prompt)) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": response}) |