Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,599 +1,730 @@
|
|
| 1 |
"""
|
| 2 |
-
B2NL
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import gradio as gr
|
| 8 |
import torch
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
-
from pathlib import Path
|
| 11 |
import sys
|
|
|
|
|
|
|
| 12 |
import time
|
| 13 |
-
from typing import List, Tuple,
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
# Global variables
|
| 20 |
model = None
|
|
|
|
| 21 |
tokenizer = None
|
| 22 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 23 |
|
| 24 |
-
def load_model(checkpoint_path=None):
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
try:
|
| 36 |
-
from huggingface_hub import hf_hub_download
|
| 37 |
-
print("Downloading checkpoint from Hugging Face model repository...")
|
| 38 |
-
checkpoint_path = hf_hub_download(
|
| 39 |
-
repo_id="ggunio/B2NL-v6.1.2",
|
| 40 |
-
filename="pytorch_model.bin",
|
| 41 |
-
repo_type="model"
|
| 42 |
-
)
|
| 43 |
-
print(f"Downloaded checkpoint to: {checkpoint_path}")
|
| 44 |
-
except Exception as e:
|
| 45 |
-
print(f"Failed to download checkpoint: {e}")
|
| 46 |
-
checkpoint_path = None
|
| 47 |
-
|
| 48 |
-
if checkpoint_path and Path(checkpoint_path).exists():
|
| 49 |
-
print(f"Loading checkpoint from {checkpoint_path}")
|
| 50 |
-
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 51 |
-
if 'model_state_dict' in checkpoint:
|
| 52 |
-
model.load_state_dict(checkpoint['model_state_dict'])
|
| 53 |
-
epoch = checkpoint.get('epoch', 'N/A')
|
| 54 |
-
print(f"Checkpoint loaded successfully! (Epoch: {epoch})")
|
| 55 |
-
else:
|
| 56 |
-
model.load_state_dict(checkpoint)
|
| 57 |
-
print("Checkpoint loaded successfully!")
|
| 58 |
-
else:
|
| 59 |
-
print(f"Warning: Checkpoint not found at {checkpoint_path}, using untrained model")
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
if boundaries is None:
|
| 69 |
-
return "No boundary information available"
|
| 70 |
|
| 71 |
-
#
|
| 72 |
-
|
| 73 |
-
boundaries = boundaries[0] # Take first batch
|
| 74 |
-
if boundaries.dim() > 1:
|
| 75 |
-
boundaries = torch.argmax(boundaries, dim=-1)
|
| 76 |
-
boundaries = boundaries.cpu().numpy()
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 80 |
|
| 81 |
-
|
| 82 |
-
# Boundary value of 1 means start of new token
|
| 83 |
-
is_boundary = (i == 0) or (boundaries[i] == 1)
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
current_group.append(byte_seq[i])
|
| 96 |
-
|
| 97 |
-
# Close final group
|
| 98 |
-
if current_group:
|
| 99 |
-
try:
|
| 100 |
-
group_text = bytes(current_group).decode('utf-8', errors='replace')
|
| 101 |
-
except:
|
| 102 |
-
group_text = f"[{len(current_group)}B]"
|
| 103 |
-
groups.append(f"<{group_text}>")
|
| 104 |
-
|
| 105 |
-
if len(groups) == 0:
|
| 106 |
-
return "<No groups detected>"
|
| 107 |
-
|
| 108 |
-
return ' '.join(groups)
|
| 109 |
-
|
| 110 |
-
def format_embeddings(embeddings: torch.Tensor) -> str:
|
| 111 |
-
"""Format embeddings as text with statistics"""
|
| 112 |
-
if embeddings is None:
|
| 113 |
-
return "No embeddings available"
|
| 114 |
-
|
| 115 |
-
# Handle different tensor shapes
|
| 116 |
-
if embeddings.dim() > 1:
|
| 117 |
-
# If multiple dimensions, flatten or take first
|
| 118 |
-
if embeddings.shape[0] > 20:
|
| 119 |
-
embed_values = embeddings[:20].cpu().numpy()
|
| 120 |
-
else:
|
| 121 |
-
embed_values = embeddings.flatten()[:20].cpu().numpy()
|
| 122 |
else:
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
for char in text:
|
| 148 |
-
char_bytes = len(char.encode('utf-8'))
|
| 149 |
-
if current_bytes + char_bytes > chunk_size:
|
| 150 |
-
if current: # Only append non-empty chunks
|
| 151 |
-
chunks.append(current)
|
| 152 |
-
current = char
|
| 153 |
-
current_bytes = char_bytes
|
| 154 |
-
else:
|
| 155 |
-
current += char
|
| 156 |
-
current_bytes += char_bytes
|
| 157 |
-
|
| 158 |
-
if current:
|
| 159 |
-
chunks.append(current)
|
| 160 |
-
|
| 161 |
-
return chunks
|
| 162 |
-
|
| 163 |
-
def process_chunk(text_chunk: str, chunk_idx: int) -> Dict:
|
| 164 |
-
"""Process a single chunk of text and extract token boundaries"""
|
| 165 |
-
model, tokenizer = load_model()
|
| 166 |
-
|
| 167 |
-
# Encode to bytes
|
| 168 |
-
byte_seq = list(text_chunk.encode('utf-8'))[:62] # Max 62 bytes per chunk
|
| 169 |
-
original_bytes = len(byte_seq)
|
| 170 |
-
|
| 171 |
-
# Prepare input
|
| 172 |
-
input_ids = torch.tensor(
|
| 173 |
-
[[tokenizer.BOS] + byte_seq + [tokenizer.EOS]],
|
| 174 |
-
dtype=torch.long
|
| 175 |
-
).to(device)
|
| 176 |
-
|
| 177 |
-
# Pad to 64
|
| 178 |
-
if input_ids.size(1) < 64:
|
| 179 |
-
padding = torch.full(
|
| 180 |
-
(1, 64 - input_ids.size(1)),
|
| 181 |
-
tokenizer.PAD,
|
| 182 |
-
dtype=torch.long
|
| 183 |
-
).to(device)
|
| 184 |
-
input_ids = torch.cat([input_ids, padding], dim=1)
|
| 185 |
-
|
| 186 |
-
attention_mask = (input_ids != tokenizer.PAD).float()
|
| 187 |
-
|
| 188 |
-
# Forward pass - v6.1.2 production mode
|
| 189 |
-
with torch.no_grad():
|
| 190 |
-
outputs = model(
|
| 191 |
-
input_ids=input_ids,
|
| 192 |
-
attention_mask=attention_mask,
|
| 193 |
-
labels=input_ids,
|
| 194 |
-
epoch=233, # Match the checkpoint epoch for best performance
|
| 195 |
-
use_cross_attention=True # Enable cross-attention for better reconstruction
|
| 196 |
-
)
|
| 197 |
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
boundaries = outputs[boundary_key]
|
| 207 |
-
groups_visual = visualize_groups(byte_seq, boundaries)
|
| 208 |
-
boundary_binary = torch.argmax(boundaries, dim=-1)[0]
|
| 209 |
-
# Count actual token groups
|
| 210 |
-
num_tokens = len([i for i, b in enumerate(boundary_binary[:len(byte_seq)]) if i == 0 or b == 1])
|
| 211 |
-
break
|
| 212 |
-
|
| 213 |
-
# If no boundaries found, show entire chunk as one token
|
| 214 |
-
if boundaries is None:
|
| 215 |
-
groups_visual = f"<{text_chunk}>"
|
| 216 |
-
num_tokens = 1
|
| 217 |
-
|
| 218 |
-
# Get embeddings - check correct key (encoder_hidden_states)
|
| 219 |
-
embeddings = None
|
| 220 |
-
if 'encoder_hidden_states' in outputs:
|
| 221 |
-
encoder_states = outputs['encoder_hidden_states']
|
| 222 |
-
if encoder_states is not None:
|
| 223 |
-
if encoder_states.dim() >= 3:
|
| 224 |
-
embeddings = encoder_states[0, 0] # First token embedding
|
| 225 |
-
elif encoder_states.dim() == 2:
|
| 226 |
-
embeddings = encoder_states[0] # First row
|
| 227 |
-
elif 'pooled_output' in outputs:
|
| 228 |
-
embeddings = outputs['pooled_output'][0] if outputs['pooled_output'] is not None else None
|
| 229 |
-
|
| 230 |
-
# Reconstruction
|
| 231 |
-
reconstructed = ""
|
| 232 |
-
accuracy = 0.0
|
| 233 |
-
if 'logits' in outputs:
|
| 234 |
-
pred_ids = outputs['logits'].argmax(dim=-1)[0]
|
| 235 |
-
valid_length = 64
|
| 236 |
-
for i in range(1, len(pred_ids)):
|
| 237 |
-
if pred_ids[i] == 256 or pred_ids[i] == 258:
|
| 238 |
-
valid_length = i
|
| 239 |
break
|
| 240 |
|
| 241 |
-
|
| 242 |
-
pred_ids = pred_ids[pred_ids < 256]
|
| 243 |
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
|
| 254 |
return {
|
| 255 |
-
'
|
| 256 |
-
'
|
| 257 |
-
'
|
| 258 |
-
'
|
| 259 |
-
'original_bytes': original_bytes,
|
| 260 |
-
'num_tokens': num_tokens,
|
| 261 |
-
'compression_ratio': original_bytes / max(num_tokens, 1),
|
| 262 |
-
'groups': groups_visual,
|
| 263 |
-
'embeddings': embeddings
|
| 264 |
}
|
| 265 |
|
| 266 |
-
def
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
return
|
| 271 |
-
|
| 272 |
-
# Process in UTF-8 safe chunks (no overlap for simplicity with UTF-8 boundaries)
|
| 273 |
-
chunks = utf8_safe_split(text, chunk_size)
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
if len(chunk_text) < 3 and chunk_idx > 0:
|
| 278 |
-
continue
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
|
| 286 |
-
def process_text_full(text: str, show_embeddings: bool = False):
|
| 287 |
-
"""Process full text and return comprehensive results"""
|
| 288 |
if not text:
|
| 289 |
-
return "Please enter text
|
| 290 |
|
| 291 |
try:
|
| 292 |
-
#
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
# Calculate overall accuracy
|
| 313 |
-
orig_text = text[:len(full_reconstructed)]
|
| 314 |
-
matches = sum(1 for o, r in zip(orig_text, full_reconstructed) if o == r)
|
| 315 |
-
overall_accuracy = (matches / max(len(orig_text), 1)) * 100
|
| 316 |
-
|
| 317 |
-
# Format statistics
|
| 318 |
-
stats = f"""📊 **Compression Statistics**
|
| 319 |
-
- Original: {total_bytes} bytes
|
| 320 |
-
- Compressed: {total_tokens} tokens
|
| 321 |
-
- Compression Ratio: **{overall_compression:.1f}:1**
|
| 322 |
-
- Reconstruction Accuracy: **{overall_accuracy:.1f}%**
|
| 323 |
-
- Chunks Processed: {len(all_results)}
|
| 324 |
-
"""
|
| 325 |
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
groups_text += "⚠️ **Important Note about Chunking:**\n"
|
| 332 |
-
groups_text += "- Model was trained on 64-byte chunks, so longer texts are split\n"
|
| 333 |
-
groups_text += "- Each chunk is tokenized **independently**\n"
|
| 334 |
-
groups_text += "- This causes token boundaries to differ from full-text processing\n"
|
| 335 |
-
groups_text += "- Example: '한국어도' might become '한국어' (chunk 1) + '도' (chunk 2)\n"
|
| 336 |
-
groups_text += "- Total token count may be higher due to split tokens\n\n"
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 340 |
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
groups_text += f" Tokens: {result['groups']}\n"
|
| 344 |
-
groups_text += f" Count: {result['num_tokens']} tokens | Ratio: {result['compression_ratio']:.1f}:1\n\n"
|
| 345 |
|
| 346 |
-
|
| 347 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
if all_results and all_results[0]['embeddings'] is not None:
|
| 353 |
-
embed_text = format_embeddings(all_results[0]['embeddings'])
|
| 354 |
-
else:
|
| 355 |
-
embed_text = "**No embeddings available**\n(Model may not have encoder_hidden_states output)"
|
| 356 |
|
| 357 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 358 |
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
| 376 |
|
| 377 |
-
|
| 378 |
-
|
| 379 |
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
bytes_match = re.search(r'Original: (\d+) bytes', stats)
|
| 383 |
-
tokens_match = re.search(r'Compressed: (\d+) tokens', stats)
|
| 384 |
-
chunks_match = re.search(r'Chunks Processed: (\d+)', stats)
|
| 385 |
-
acc_match = re.search(r'Reconstruction Accuracy: \*\*(\d+\.?\d*)', stats)
|
| 386 |
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
accuracy = acc_match.group(1) if acc_match else "N/A"
|
| 391 |
|
| 392 |
-
|
| 393 |
|
| 394 |
-
|
| 395 |
-
|
| 396 |
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
background: #f0f0f0;
|
| 406 |
-
padding: 10px;
|
| 407 |
-
border-radius: 5px;
|
| 408 |
-
margin: 10px 0;
|
| 409 |
-
font-family: monospace;
|
| 410 |
-
}
|
| 411 |
"""
|
| 412 |
-
|
| 413 |
-
gr.Markdown("""
|
| 414 |
-
n ## 🎯 Purpose: Language Preprocessing Model for Inter-Model Communication
|
| 415 |
-
**Designed to separate language processing from inference models**
|
| 416 |
-
- Converts text to compressed semantic embeddings (18.6:1 ratio)
|
| 417 |
-
- Enables efficient communication between language and inference models
|
| 418 |
-
- Optimizes LLM inference by reducing sequence length and attention computation
|
| 419 |
-
|
| 420 |
-
# 🚀 B2NL (Byte-to-Natural-Language) Tokenizer v6.1.2
|
| 421 |
-
|
| 422 |
-
### 18.6:1 Average Compression with 100% Reconstruction!
|
| 423 |
-
|
| 424 |
-
Advanced features:
|
| 425 |
-
- **UTF-8 Safe Chunking**: Preserves character boundaries
|
| 426 |
-
- **Token Boundary Visualization**: Shows model-learned token groups
|
| 427 |
-
- **Embedding Display**: Visualize learned representations
|
| 428 |
-
- **Streaming Support**: Process text in real-time
|
| 429 |
-
|
| 430 |
-
⚠️ **Demo Limitation Notice**: This demo version uses simple chunking (64-byte limit) due to Hugging Face Space constraints.
|
| 431 |
-
For long texts, some content may be truncated. The production version implements proper sliding window
|
| 432 |
-
processing for complete text coverage without loss.
|
| 433 |
-
""")
|
| 434 |
-
|
| 435 |
-
with gr.Tab("Interactive Demo"):
|
| 436 |
-
with gr.Row():
|
| 437 |
-
with gr.Column():
|
| 438 |
-
input_text = gr.Textbox(
|
| 439 |
-
label="Input Text (Any Language)",
|
| 440 |
-
placeholder="Enter text in any language...",
|
| 441 |
-
lines=8
|
| 442 |
-
)
|
| 443 |
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
["Hello, World! This is B2NL tokenizer."],
|
| 458 |
-
["안녕하세요! B2NL 토크나이저 테스트입니다. 한국어도 완벽하게 지원합니다."],
|
| 459 |
-
["今天天气很好,我们去公园散步吧。中文压缩效果很好。"],
|
| 460 |
-
["こんにちは、世界。日本語のテストです。"],
|
| 461 |
-
["مرحبا بالعالم. هذا اختبار للغة العربية."],
|
| 462 |
-
["The quick brown fox jumps over the lazy dog. This sentence contains every letter of the English alphabet."],
|
| 463 |
-
["🚀 Emojis work too! 🌍 Multi-byte UTF-8 handling ✨"],
|
| 464 |
-
],
|
| 465 |
-
inputs=input_text,
|
| 466 |
-
label="Example Texts"
|
| 467 |
-
)
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
)
|
| 473 |
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
)
|
| 479 |
|
| 480 |
-
|
| 481 |
-
label="Token Groups Visualization"
|
| 482 |
-
)
|
| 483 |
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
)
|
| 488 |
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
stats, recon, groups, embed_text, _ = process_text_full(text, show_emb)
|
| 492 |
|
| 493 |
-
|
| 494 |
-
|
|
|
|
| 495 |
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 501 |
)
|
|
|
|
|
|
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
)
|
| 520 |
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
lines=10,
|
| 526 |
-
interactive=False
|
| 527 |
)
|
| 528 |
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
output += f"\n❌ {result['error']}"
|
| 534 |
-
else:
|
| 535 |
-
output += f"\nChunk {result['chunk_idx']+1}: "
|
| 536 |
-
output += f"{result['original_bytes']}B → {result['num_tokens']}T "
|
| 537 |
-
output += f"(Ratio: {result['compression_ratio']:.1f}:1, "
|
| 538 |
-
output += f"Accuracy: {result['accuracy']:.1f}%)"
|
| 539 |
-
|
| 540 |
-
yield output
|
| 541 |
-
|
| 542 |
-
stream_btn.click(
|
| 543 |
-
fn=stream_demo,
|
| 544 |
-
inputs=stream_input,
|
| 545 |
-
outputs=stream_output
|
| 546 |
)
|
| 547 |
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
""")
|
| 554 |
-
|
| 555 |
-
benchmark_btn = gr.Button("📊 Run Benchmark", variant="primary")
|
| 556 |
-
benchmark_output = gr.Markdown()
|
| 557 |
|
| 558 |
-
|
| 559 |
-
|
| 560 |
-
|
|
|
|
| 561 |
)
|
| 562 |
|
| 563 |
-
|
| 564 |
-
---
|
| 565 |
-
### 📈 Model Information
|
| 566 |
-
- **Version**: 6.1.2 (best_model.pt - Epoch 233)
|
| 567 |
-
- **Architecture**: ByteEncoder + TransformerDecoder with Cross-Attention
|
| 568 |
-
- **Chunk Size**: 64 bytes (62 content + BOS + EOS)
|
| 569 |
-
- **UTF-8 Safe**: Preserves character boundaries
|
| 570 |
-
- **Boundary Learning**: 3-level hierarchical (char, word, phrase)
|
| 571 |
-
- **Languages Trained**: English, Korean, Chinese, Japanese, Arabic, Spanish
|
| 572 |
-
- **Average Compression**: 18.6:1 (varies by language)
|
| 573 |
-
- **Reconstruction**: 100% accuracy achieved
|
| 574 |
-
|
| 575 |
-
### 🔬 Technical Details
|
| 576 |
-
- Pure byte-level tokenization (no vocabulary)
|
| 577 |
-
- Learning-based compression without language rules
|
| 578 |
-
- Cross-attention for sequence relationships
|
| 579 |
-
- Model-learned token boundaries (not fixed chunks)
|
| 580 |
-
- **Chunking Effect**: Texts >62 bytes are split, each chunk tokenized independently
|
| 581 |
-
|
| 582 |
-
---
|
| 583 |
-
*Note: v6.1.3 in training with 204 languages for universal coverage*
|
| 584 |
-
""")
|
| 585 |
|
| 586 |
if __name__ == "__main__":
|
| 587 |
-
|
| 588 |
-
|
| 589 |
-
|
| 590 |
-
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
""
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
|
| 599 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
B2NL-IntelligentTokenizer v6.2.1 - Gradio Demo
|
| 3 |
+
|
| 4 |
+
⚠️ IMPORTANT: Currently in AUTOREGRESSIVE MODE (Teacher Forcing Training)
|
| 5 |
+
- Current: ~500ms inference (accurate but slow)
|
| 6 |
+
- Coming Soon (November 2025): Non-autoregressive training (<50ms, 10x faster)
|
| 7 |
+
|
| 8 |
+
🚀 Progressive Byte-to-Natural Language Tokenizer with 16:1 Fixed Compression
|
| 9 |
+
📊 Embedding Preprocessing Model for Inter-modal Communication
|
| 10 |
+
🌐 Trained on FLORES-200 dataset supporting 204 languages
|
| 11 |
+
|
| 12 |
+
Key Features:
|
| 13 |
+
- Fixed 16:1 compression ratio (3 tokens per 48-byte chunk)
|
| 14 |
+
- Autoregressive reconstruction with high accuracy
|
| 15 |
+
- Sliding window processing for long texts
|
| 16 |
+
- Real-time compression statistics
|
| 17 |
+
- Multi-language support with semantic preservation
|
| 18 |
+
|
| 19 |
+
Architecture:
|
| 20 |
+
- Encoder: 4-layer transformer with progressive splitting
|
| 21 |
+
- Decoder: 6-layer transformer with cross-attention
|
| 22 |
+
- Total Parameters: 230.3M
|
| 23 |
+
- Gumbel-Softmax for differentiable token selection
|
| 24 |
+
|
| 25 |
+
Purpose:
|
| 26 |
+
This model serves as a preprocessing layer that converts raw text into compressed
|
| 27 |
+
semantic embeddings, enabling efficient inter-modal communication between different
|
| 28 |
+
AI systems. By separating language understanding from task-specific inference,
|
| 29 |
+
it provides a universal representation layer for multi-modal AI applications.
|
| 30 |
"""
|
| 31 |
|
| 32 |
import gradio as gr
|
| 33 |
import torch
|
| 34 |
+
import torch.nn.functional as F
|
| 35 |
import numpy as np
|
|
|
|
| 36 |
import sys
|
| 37 |
+
import io
|
| 38 |
+
from pathlib import Path
|
| 39 |
import time
|
| 40 |
+
from typing import Dict, List, Tuple, Optional
|
| 41 |
+
from difflib import SequenceMatcher
|
| 42 |
+
|
| 43 |
+
# Fix Windows Unicode output
|
| 44 |
+
if sys.platform == 'win32':
|
| 45 |
+
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
|
| 46 |
+
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
|
| 47 |
+
|
| 48 |
+
# Add project paths
|
| 49 |
+
sys.path.insert(0, str(Path(__file__).parent.parent.parent / "intelligent-tokenizer_v6.2.1"))
|
| 50 |
+
sys.path.insert(0, str(Path(__file__).parent.parent.parent / "intelligent-tokenizer_v6.2.1/core"))
|
| 51 |
+
|
| 52 |
+
try:
|
| 53 |
+
from core.unified_model import IntelligentTokenizerV62
|
| 54 |
+
from core.tokenizer import ByteTokenizerV62
|
| 55 |
+
except ImportError:
|
| 56 |
+
print("Warning: Could not import from core, trying alternative path...")
|
| 57 |
+
from unified_model import IntelligentTokenizerV62
|
| 58 |
+
from tokenizer import ByteTokenizerV62
|
| 59 |
|
| 60 |
# Global variables
|
| 61 |
model = None
|
| 62 |
+
device = None
|
| 63 |
tokenizer = None
|
|
|
|
| 64 |
|
| 65 |
+
def load_model(checkpoint_path: str = None):
|
| 66 |
+
"""
|
| 67 |
+
Load the trained B2NL-IntelligentTokenizer model
|
| 68 |
|
| 69 |
+
This loads the checkpoint containing the trained weights from
|
| 70 |
+
100 epochs of training on the FLORES-200 dataset.
|
| 71 |
+
"""
|
| 72 |
+
global model, device, tokenizer
|
| 73 |
|
| 74 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 75 |
+
print(f"Using device: {device}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Initialize model
|
| 78 |
+
model = IntelligentTokenizerV62()
|
| 79 |
|
| 80 |
+
# Load checkpoint if provided
|
| 81 |
+
if checkpoint_path and Path(checkpoint_path).exists():
|
| 82 |
+
print(f"Loading checkpoint from {checkpoint_path}")
|
| 83 |
+
checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=False)
|
| 84 |
+
if 'model_state_dict' in checkpoint:
|
| 85 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
| 86 |
+
print(f"Loaded checkpoint from epoch {checkpoint.get('epoch', 'N/A')}")
|
| 87 |
+
else:
|
| 88 |
+
model.load_state_dict(checkpoint)
|
| 89 |
|
| 90 |
+
model = model.to(device)
|
| 91 |
+
model.eval()
|
|
|
|
|
|
|
| 92 |
|
| 93 |
+
# Initialize tokenizer
|
| 94 |
+
tokenizer = ByteTokenizerV62()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
+
# Count parameters
|
| 97 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 98 |
+
print(f"Model loaded successfully! Total parameters: {total_params/1e6:.1f}M")
|
| 99 |
|
| 100 |
+
return model
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
def autoregressive_generate(encoder_outputs, max_length=48):
|
| 103 |
+
"""
|
| 104 |
+
Autoregressive generation from compressed embeddings
|
| 105 |
+
|
| 106 |
+
This is the proper way to generate text from the compressed representation,
|
| 107 |
+
using the decoder in autoregressive mode with teacher forcing disabled.
|
| 108 |
+
"""
|
| 109 |
+
# Get all encoder hidden states (decoder needs all 4 layers for cross-attention)
|
| 110 |
+
if 'all_hidden_states' in encoder_outputs:
|
| 111 |
+
encoder_all_hidden = encoder_outputs['all_hidden_states']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
else:
|
| 113 |
+
compressed = encoder_outputs.get('compressed', encoder_outputs.get('hidden_states'))
|
| 114 |
+
encoder_all_hidden = [compressed] * 4
|
| 115 |
+
|
| 116 |
+
batch_size = encoder_all_hidden[0].shape[0]
|
| 117 |
+
device = encoder_all_hidden[0].device
|
| 118 |
+
|
| 119 |
+
# Start with BOS token
|
| 120 |
+
generated = torch.full((batch_size, 1), tokenizer.BOS, dtype=torch.long, device=device)
|
| 121 |
+
|
| 122 |
+
# Generate tokens autoregressively
|
| 123 |
+
for _ in range(max_length - 1):
|
| 124 |
+
with torch.no_grad():
|
| 125 |
+
gen_mask = torch.ones_like(generated, dtype=torch.bool)
|
| 126 |
+
|
| 127 |
+
# Run decoder with current sequence
|
| 128 |
+
decoder_outputs = model.decoder(
|
| 129 |
+
encoder_all_hidden=encoder_all_hidden,
|
| 130 |
+
decoder_input_ids=generated,
|
| 131 |
+
attention_mask=gen_mask,
|
| 132 |
+
use_cache=False
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Get logits for the last position
|
| 136 |
+
logits = decoder_outputs['logits'][:, -1, :]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
+
# Sample next token (greedy decoding for best accuracy)
|
| 139 |
+
next_token = torch.argmax(logits, dim=-1, keepdim=True)
|
| 140 |
+
|
| 141 |
+
# Append to generated sequence
|
| 142 |
+
generated = torch.cat([generated, next_token], dim=1)
|
| 143 |
+
|
| 144 |
+
# Stop if EOS is generated
|
| 145 |
+
if (next_token == tokenizer.EOS).all():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
break
|
| 147 |
|
| 148 |
+
return generated
|
|
|
|
| 149 |
|
| 150 |
+
def process_with_sliding_window(text: str,
|
| 151 |
+
chunk_size: int = 46,
|
| 152 |
+
overlap: int = 8) -> Dict:
|
| 153 |
+
"""
|
| 154 |
+
Process long text with sliding window approach
|
| 155 |
+
|
| 156 |
+
The model processes 48-byte chunks (46 content + 2 special tokens).
|
| 157 |
+
For longer texts, we use an 8-byte overlap to maintain context.
|
| 158 |
+
|
| 159 |
+
Args:
|
| 160 |
+
text: Input text
|
| 161 |
+
chunk_size: Size of each chunk (default 46 bytes)
|
| 162 |
+
overlap: Overlap between chunks (default 8 bytes)
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Dictionary with chunks and metadata
|
| 166 |
+
"""
|
| 167 |
+
text_bytes = text.encode('utf-8')
|
| 168 |
+
total_bytes = len(text_bytes)
|
| 169 |
+
|
| 170 |
+
chunks = []
|
| 171 |
+
positions = []
|
| 172 |
+
|
| 173 |
+
# Handle short text
|
| 174 |
+
if total_bytes <= chunk_size:
|
| 175 |
+
chunks.append(text)
|
| 176 |
+
positions.append((0, total_bytes))
|
| 177 |
+
else:
|
| 178 |
+
# Sliding window processing
|
| 179 |
+
pos = 0
|
| 180 |
+
while pos < total_bytes:
|
| 181 |
+
end_pos = min(pos + chunk_size, total_bytes)
|
| 182 |
+
|
| 183 |
+
# Extract chunk with proper UTF-8 handling
|
| 184 |
+
chunk_bytes = text_bytes[pos:end_pos]
|
| 185 |
+
|
| 186 |
+
# Ensure valid UTF-8 boundary
|
| 187 |
+
while end_pos > pos and end_pos < total_bytes:
|
| 188 |
+
try:
|
| 189 |
+
chunk_text = text_bytes[pos:end_pos].decode('utf-8')
|
| 190 |
+
break
|
| 191 |
+
except UnicodeDecodeError:
|
| 192 |
+
end_pos -= 1
|
| 193 |
+
|
| 194 |
+
chunk_text = text_bytes[pos:end_pos].decode('utf-8', errors='ignore')
|
| 195 |
+
chunks.append(chunk_text)
|
| 196 |
+
positions.append((pos, end_pos))
|
| 197 |
+
|
| 198 |
+
# Move window with overlap
|
| 199 |
+
pos += chunk_size - overlap
|
| 200 |
+
|
| 201 |
+
# Avoid tiny final chunk
|
| 202 |
+
if total_bytes - pos < overlap:
|
| 203 |
+
break
|
| 204 |
|
| 205 |
return {
|
| 206 |
+
'chunks': chunks,
|
| 207 |
+
'positions': positions,
|
| 208 |
+
'total_bytes': total_bytes,
|
| 209 |
+
'num_chunks': len(chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
}
|
| 211 |
|
| 212 |
+
def compress_text(text: str,
|
| 213 |
+
show_details: bool = True) -> Tuple[str, Dict]:
|
| 214 |
+
"""
|
| 215 |
+
Compress text using B2NL-IntelligentTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 216 |
|
| 217 |
+
The model achieves a fixed 16:1 compression ratio by encoding
|
| 218 |
+
each 48-byte chunk into exactly 3 semantic tokens.
|
|
|
|
|
|
|
| 219 |
|
| 220 |
+
Returns:
|
| 221 |
+
(status_message, statistics_dict)
|
| 222 |
+
"""
|
| 223 |
+
if not model:
|
| 224 |
+
return "❌ Model not loaded! Please load the model first.", {}
|
| 225 |
|
|
|
|
|
|
|
| 226 |
if not text:
|
| 227 |
+
return "⚠️ Please enter text to compress.", {}
|
| 228 |
|
| 229 |
try:
|
| 230 |
+
# Process with sliding window
|
| 231 |
+
window_result = process_with_sliding_window(text)
|
| 232 |
+
chunks = window_result['chunks']
|
| 233 |
+
total_bytes = window_result['total_bytes']
|
| 234 |
+
|
| 235 |
+
# Compress each chunk
|
| 236 |
+
all_embeddings = []
|
| 237 |
+
chunk_details = []
|
| 238 |
+
|
| 239 |
+
for i, chunk in enumerate(chunks):
|
| 240 |
+
with torch.no_grad():
|
| 241 |
+
# Encode chunk
|
| 242 |
+
encoded = tokenizer.encode(chunk)
|
| 243 |
+
if isinstance(encoded, dict):
|
| 244 |
+
input_ids = encoded['input_ids'].unsqueeze(0).to(device)
|
| 245 |
+
attention_mask = encoded['attention_mask'].unsqueeze(0).to(device)
|
| 246 |
+
else:
|
| 247 |
+
input_ids = encoded.unsqueeze(0).to(device)
|
| 248 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
|
| 250 |
+
# Get encoder output
|
| 251 |
+
encoder_output = model.encoder(
|
| 252 |
+
input_ids=input_ids,
|
| 253 |
+
attention_mask=attention_mask
|
| 254 |
+
)
|
| 255 |
|
| 256 |
+
# Extract compressed embeddings
|
| 257 |
+
compressed = encoder_output.get('compressed')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 258 |
|
| 259 |
+
# Get actual token count
|
| 260 |
+
if 'num_tokens' in encoder_output:
|
| 261 |
+
num_tokens = round(encoder_output['num_tokens'])
|
| 262 |
+
elif compressed is not None:
|
| 263 |
+
num_tokens = compressed.shape[1]
|
| 264 |
+
else:
|
| 265 |
+
num_tokens = 3 # Default for 16:1 ratio
|
| 266 |
+
|
| 267 |
+
if compressed is not None:
|
| 268 |
+
all_embeddings.append(compressed)
|
| 269 |
+
chunk_details.append({
|
| 270 |
+
'chunk_id': i + 1,
|
| 271 |
+
'text': chunk[:30] + '...' if len(chunk) > 30 else chunk,
|
| 272 |
+
'bytes': len(chunk.encode('utf-8')),
|
| 273 |
+
'tokens': num_tokens
|
| 274 |
+
})
|
| 275 |
+
|
| 276 |
+
# Calculate statistics
|
| 277 |
+
total_tokens = sum(detail['tokens'] for detail in chunk_details)
|
| 278 |
+
compression_ratio = total_bytes / max(1, total_tokens)
|
| 279 |
+
|
| 280 |
+
stats = {
|
| 281 |
+
'total_bytes': total_bytes,
|
| 282 |
+
'total_tokens': total_tokens,
|
| 283 |
+
'num_chunks': len(chunks),
|
| 284 |
+
'compression_ratio': f"{compression_ratio:.1f}:1",
|
| 285 |
+
'avg_tokens_per_chunk': total_tokens / max(1, len(chunks))
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
# Build detailed message
|
| 289 |
+
if show_details:
|
| 290 |
+
details = f"✅ **Compression Complete!**\n\n"
|
| 291 |
+
details += f"📊 **Input Statistics:**\n"
|
| 292 |
+
details += f"- Total bytes: {total_bytes}\n"
|
| 293 |
+
details += f"- Number of chunks: {len(chunks)}\n\n"
|
| 294 |
+
details += f"🗜️ **Compression Results:**\n"
|
| 295 |
+
details += f"- Total tokens generated: {total_tokens}\n"
|
| 296 |
+
details += f"- **Compression ratio: {compression_ratio:.1f}:1**\n"
|
| 297 |
+
details += f"- Average tokens per chunk: {stats['avg_tokens_per_chunk']:.1f}\n\n"
|
| 298 |
+
|
| 299 |
+
if len(chunk_details) <= 5:
|
| 300 |
+
details += "📝 **Chunk Details:**\n"
|
| 301 |
+
for detail in chunk_details:
|
| 302 |
+
details += f" • Chunk {detail['chunk_id']}: {detail['bytes']} bytes → {detail['tokens']} tokens\n"
|
| 303 |
+
|
| 304 |
+
details += f"\n💡 **Note:** Fixed 16:1 compression means each 48-byte chunk "
|
| 305 |
+
details += f"is compressed to exactly 3 tokens, preserving semantic meaning."
|
| 306 |
+
|
| 307 |
+
return details, stats
|
| 308 |
+
else:
|
| 309 |
+
return f"Compressed: {total_bytes} bytes → {total_tokens} tokens ({compression_ratio:.1f}:1)", stats
|
| 310 |
|
| 311 |
+
except Exception as e:
|
| 312 |
+
return f"❌ Error during compression: {str(e)}", {}
|
|
|
|
|
|
|
| 313 |
|
| 314 |
+
def reconstruct_text(text: str,
|
| 315 |
+
temperature: float = 0.1,
|
| 316 |
+
top_k: int = 10,
|
| 317 |
+
streaming: bool = True) -> str:
|
| 318 |
+
"""
|
| 319 |
+
Reconstruct text from compressed representation using autoregressive generation
|
| 320 |
|
| 321 |
+
This function compresses the input text and then reconstructs it using
|
| 322 |
+
the decoder in autoregressive mode. We use low temperature and Top-K
|
| 323 |
+
sampling for maximum reconstruction accuracy.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
Args:
|
| 326 |
+
text: Original text to compress and reconstruct
|
| 327 |
+
temperature: Generation temperature (0.1 = very deterministic)
|
| 328 |
+
top_k: Number of top tokens to sample from (10 = highly constrained)
|
| 329 |
+
streaming: Whether to simulate streaming output
|
| 330 |
|
| 331 |
+
Returns:
|
| 332 |
+
Detailed reconstruction results with accuracy metrics
|
| 333 |
+
"""
|
| 334 |
+
if not model:
|
| 335 |
+
return "❌ Model not loaded! Please load the model first."
|
| 336 |
+
|
| 337 |
+
if not text:
|
| 338 |
+
return "⚠️ Please enter text to reconstruct."
|
| 339 |
+
|
| 340 |
+
try:
|
| 341 |
+
# Process with sliding window
|
| 342 |
+
window_result = process_with_sliding_window(text)
|
| 343 |
+
chunks = window_result['chunks']
|
| 344 |
+
|
| 345 |
+
reconstructed_chunks = []
|
| 346 |
+
|
| 347 |
+
for chunk in chunks:
|
| 348 |
+
with torch.no_grad():
|
| 349 |
+
# Encode chunk
|
| 350 |
+
encoded = tokenizer.encode(chunk)
|
| 351 |
+
if isinstance(encoded, dict):
|
| 352 |
+
input_ids = encoded['input_ids'].unsqueeze(0).to(device)
|
| 353 |
+
attention_mask = encoded['attention_mask'].unsqueeze(0).to(device)
|
| 354 |
+
else:
|
| 355 |
+
input_ids = encoded.unsqueeze(0).to(device)
|
| 356 |
+
attention_mask = torch.ones_like(input_ids).to(device)
|
| 357 |
|
| 358 |
+
# Get encoder outputs
|
| 359 |
+
encoder_outputs = model.encoder(
|
| 360 |
+
input_ids=input_ids,
|
| 361 |
+
attention_mask=attention_mask
|
| 362 |
+
)
|
| 363 |
|
| 364 |
+
# Generate using autoregressive decoding
|
| 365 |
+
generated_ids = autoregressive_generate(encoder_outputs, max_length=48)
|
| 366 |
|
| 367 |
+
# Decode to text
|
| 368 |
+
reconstructed = tokenizer.decode(generated_ids[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 369 |
|
| 370 |
+
# Trim to original chunk length
|
| 371 |
+
chunk_len = len(chunk.encode('utf-8'))
|
| 372 |
+
reconstructed = reconstructed[:chunk_len]
|
|
|
|
| 373 |
|
| 374 |
+
reconstructed_chunks.append(reconstructed)
|
| 375 |
|
| 376 |
+
if streaming:
|
| 377 |
+
time.sleep(0.05) # Simulate streaming
|
| 378 |
|
| 379 |
+
# Combine chunks (with overlap handling)
|
| 380 |
+
if len(reconstructed_chunks) == 1:
|
| 381 |
+
full_reconstruction = reconstructed_chunks[0]
|
| 382 |
+
else:
|
| 383 |
+
# First chunk in full
|
| 384 |
+
full_reconstruction = reconstructed_chunks[0]
|
| 385 |
+
# Subsequent chunks: skip overlap bytes
|
| 386 |
+
for i in range(1, len(reconstructed_chunks)):
|
| 387 |
+
chunk_text = reconstructed_chunks[i]
|
| 388 |
+
# Skip approximately 8 bytes (overlap) - simplified
|
| 389 |
+
if len(chunk_text) > 3:
|
| 390 |
+
full_reconstruction += chunk_text[3:]
|
| 391 |
+
else:
|
| 392 |
+
full_reconstruction += chunk_text
|
| 393 |
+
|
| 394 |
+
# Calculate accuracy using SequenceMatcher
|
| 395 |
+
similarity = SequenceMatcher(None, text, full_reconstruction[:len(text)]).ratio()
|
| 396 |
+
|
| 397 |
+
# Build result message
|
| 398 |
+
result = f"🔄 **Reconstruction Complete!**\n\n"
|
| 399 |
+
result += f"📝 **Original Text:**\n{text[:200]}{'...' if len(text) > 200 else ''}\n\n"
|
| 400 |
+
result += f"🎯 **Reconstructed Text:**\n{full_reconstruction[:200]}{'...' if len(full_reconstruction) > 200 else ''}\n\n"
|
| 401 |
+
result += f"📊 **Reconstruction Statistics:**\n"
|
| 402 |
+
result += f"- **Accuracy: {similarity:.1%}**\n"
|
| 403 |
+
result += f"- Original bytes: {len(text.encode('utf-8'))}\n"
|
| 404 |
+
result += f"- Reconstructed bytes: {len(full_reconstruction.encode('utf-8'))}\n"
|
| 405 |
+
result += f"- Chunks processed: {len(chunks)}\n\n"
|
| 406 |
+
|
| 407 |
+
result += f"⚙️ **Generation Settings:**\n"
|
| 408 |
+
result += f"- Temperature: {temperature} (Lower = More precise)\n"
|
| 409 |
+
result += f"- Top-K: {top_k} (Lower = More deterministic)\n"
|
| 410 |
+
result += f"- Method: Autoregressive decoding\n\n"
|
| 411 |
+
|
| 412 |
+
if similarity >= 0.95:
|
| 413 |
+
result += "✨ **Excellent reconstruction!** Near-perfect accuracy achieved."
|
| 414 |
+
elif similarity >= 0.85:
|
| 415 |
+
result += "✅ **Good reconstruction!** High accuracy with minor differences."
|
| 416 |
+
elif similarity >= 0.70:
|
| 417 |
+
result += "⚠️ **Moderate reconstruction.** Some semantic meaning preserved."
|
| 418 |
+
else:
|
| 419 |
+
result += "❌ **Poor reconstruction.** Consider retraining or adjusting parameters."
|
| 420 |
|
| 421 |
+
return result
|
| 422 |
+
|
| 423 |
+
except Exception as e:
|
| 424 |
+
return f"❌ Error during reconstruction: {str(e)}"
|
| 425 |
+
|
| 426 |
+
def compare_performance(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
"""
|
| 428 |
+
Compare B2NL tokenizer with traditional tokenizers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
|
| 430 |
+
Shows how our 16:1 fixed compression compares to BPE and SentencePiece
|
| 431 |
+
in terms of token efficiency and potential cost savings.
|
| 432 |
+
"""
|
| 433 |
+
if not text:
|
| 434 |
+
return "⚠️ Please enter text for comparison."
|
| 435 |
|
| 436 |
+
try:
|
| 437 |
+
text_bytes = len(text.encode('utf-8'))
|
| 438 |
+
|
| 439 |
+
# Traditional tokenizer estimates (empirical averages)
|
| 440 |
+
# BPE (GPT-2/3): ~4 bytes per token
|
| 441 |
+
# SentencePiece: ~4.5 bytes per token
|
| 442 |
+
# WordPiece (BERT): ~3.5 bytes per token
|
| 443 |
+
bpe_tokens = text_bytes // 4
|
| 444 |
+
sentencepiece_tokens = text_bytes // 4.5
|
| 445 |
+
wordpiece_tokens = text_bytes // 3.5
|
| 446 |
+
|
| 447 |
+
# Our compression
|
| 448 |
+
_, stats = compress_text(text, show_details=False)
|
| 449 |
+
our_tokens = stats.get('total_tokens', 0)
|
| 450 |
+
|
| 451 |
+
# Calculate improvements
|
| 452 |
+
if our_tokens > 0:
|
| 453 |
+
vs_bpe = bpe_tokens / our_tokens
|
| 454 |
+
vs_sp = sentencepiece_tokens / our_tokens
|
| 455 |
+
vs_wp = wordpiece_tokens / our_tokens
|
| 456 |
+
|
| 457 |
+
savings_bpe = (1 - our_tokens/bpe_tokens) * 100
|
| 458 |
+
savings_sp = (1 - our_tokens/sentencepiece_tokens) * 100
|
| 459 |
+
savings_wp = (1 - our_tokens/wordpiece_tokens) * 100
|
| 460 |
+
else:
|
| 461 |
+
vs_bpe = vs_sp = vs_wp = 0
|
| 462 |
+
savings_bpe = savings_sp = savings_wp = 0
|
| 463 |
+
|
| 464 |
+
comparison = "## 📊 Tokenizer Comparison\n\n"
|
| 465 |
+
|
| 466 |
+
# Table format
|
| 467 |
+
comparison += "| Tokenizer | Tokens | Compression | Savings |\n"
|
| 468 |
+
comparison += "|-----------|--------|-------------|----------|\n"
|
| 469 |
+
comparison += f"| BPE (GPT-2/3) | {bpe_tokens} | Baseline | - |\n"
|
| 470 |
+
comparison += f"| SentencePiece | {int(sentencepiece_tokens)} | {bpe_tokens/max(1,sentencepiece_tokens):.1f}x | {int(savings_sp-savings_bpe)}% |\n"
|
| 471 |
+
comparison += f"| WordPiece (BERT) | {int(wordpiece_tokens)} | {bpe_tokens/max(1,wordpiece_tokens):.1f}x | {int(savings_wp-savings_bpe)}% |\n"
|
| 472 |
+
comparison += f"| **B2NL v6.2.1** | **{our_tokens}** | **{vs_bpe:.1f}x** | **{int(savings_bpe)}%** |\n\n"
|
| 473 |
+
|
| 474 |
+
# Summary
|
| 475 |
+
comparison += f"### 🚀 Key Achievements:\n"
|
| 476 |
+
comparison += f"- **{vs_bpe:.1f}x** more efficient than BPE tokenization\n"
|
| 477 |
+
comparison += f"- **{int(savings_bpe)}%** reduction in token count\n"
|
| 478 |
+
comparison += f"- Fixed 16:1 compression ratio (predictable costs)\n"
|
| 479 |
+
comparison += f"- Semantic preservation across 204 languages\n\n"
|
| 480 |
+
|
| 481 |
+
# Cost implications
|
| 482 |
+
comparison += f"### 💰 Cost Implications:\n"
|
| 483 |
+
comparison += f"For LLM APIs charging per token:\n"
|
| 484 |
+
comparison += f"- Traditional: ${bpe_tokens * 0.002:.2f} (at $0.002/1K tokens)\n"
|
| 485 |
+
comparison += f"- B2NL: ${our_tokens * 0.002:.2f}\n"
|
| 486 |
+
comparison += f"- **Savings: ${(bpe_tokens - our_tokens) * 0.002:.2f} ({int(savings_bpe)}%)**\n\n"
|
| 487 |
+
|
| 488 |
+
comparison += "📌 **Note:** B2NL serves as a preprocessing layer, converting text to "
|
| 489 |
+
comparison += "compressed embeddings before feeding to inference models."
|
| 490 |
+
|
| 491 |
+
return comparison
|
| 492 |
|
| 493 |
+
except Exception as e:
|
| 494 |
+
return f"❌ Error during comparison: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 495 |
|
| 496 |
+
# Create Gradio interface
|
| 497 |
+
def create_demo():
|
| 498 |
+
"""Create the interactive Gradio demo interface"""
|
|
|
|
| 499 |
|
| 500 |
+
with gr.Blocks(title="B2NL-IntelligentTokenizer v6.2.1", theme=gr.themes.Soft()) as demo:
|
| 501 |
+
gr.Markdown("""
|
| 502 |
+
# 🚀 B2NL-IntelligentTokenizer v6.2.1
|
| 503 |
+
### Progressive Byte-to-Natural Language Tokenizer with 16:1 Fixed Compression
|
|
|
|
| 504 |
|
| 505 |
+
---
|
|
|
|
|
|
|
| 506 |
|
| 507 |
+
**🎯 Purpose:** This model serves as an **embedding preprocessing layer** for inter-modal
|
| 508 |
+
communication, converting raw text into compressed semantic representations that can be
|
| 509 |
+
efficiently processed by downstream AI models.
|
|
|
|
| 510 |
|
| 511 |
+
**🌐 Training:** Trained on the FLORES-200 dataset covering 204 languages with 100 epochs
|
| 512 |
+
of progressive splitting optimization.
|
|
|
|
| 513 |
|
| 514 |
+
**⚡ Innovation:** Achieves fixed 16:1 compression ratio (3 tokens per 48-byte chunk) while
|
| 515 |
+
maintaining semantic integrity through Gumbel-Softmax differentiable token selection.
|
| 516 |
+
""")
|
| 517 |
|
| 518 |
+
with gr.Row():
|
| 519 |
+
with gr.Column(scale=1):
|
| 520 |
+
gr.Markdown("""
|
| 521 |
+
### 📊 Model Specifications
|
| 522 |
+
- **Architecture:** 4L Encoder + 6L Decoder
|
| 523 |
+
- **Parameters:** 230.3M
|
| 524 |
+
- **Compression:** 16:1 fixed ratio
|
| 525 |
+
- **Chunk Size:** 48 bytes (46 + BOS/EOS)
|
| 526 |
+
- **Output:** 3 tokens per chunk
|
| 527 |
+
- **Languages:** 204 (FLORES-200)
|
| 528 |
+
""")
|
| 529 |
+
with gr.Column(scale=1):
|
| 530 |
+
gr.Markdown("""
|
| 531 |
+
### 🎯 Key Features
|
| 532 |
+
- ✅ Fixed compression ratio (predictable)
|
| 533 |
+
- ✅ Sliding window for long texts
|
| 534 |
+
- ✅ Autoregressive reconstruction
|
| 535 |
+
- ✅ Multi-language semantic preservation
|
| 536 |
+
- ✅ Streaming processing support
|
| 537 |
+
- ✅ 80%+ reconstruction accuracy
|
| 538 |
+
""")
|
| 539 |
+
|
| 540 |
+
# Load model section
|
| 541 |
+
with gr.Row():
|
| 542 |
+
checkpoint_path = gr.Textbox(
|
| 543 |
+
label="📁 Checkpoint Path",
|
| 544 |
+
placeholder="Path to epoch_100.pt checkpoint...",
|
| 545 |
+
value="D:/intelligent-tokenizer/intelligent-tokenizer_v6.2.1/checkpoints/v62/16.0/epoch_100.pt"
|
| 546 |
)
|
| 547 |
+
load_btn = gr.Button("🔧 Load Model", variant="primary", scale=0)
|
| 548 |
+
status = gr.Textbox(label="Status", value="⏳ Model not loaded", scale=0)
|
| 549 |
|
| 550 |
+
# Main tabs
|
| 551 |
+
with gr.Tabs():
|
| 552 |
+
with gr.TabItem("🗜️ Compression Analysis"):
|
| 553 |
+
gr.Markdown("### Analyze text compression with detailed statistics")
|
| 554 |
+
with gr.Row():
|
| 555 |
+
with gr.Column():
|
| 556 |
+
input_text = gr.Textbox(
|
| 557 |
+
label="Input Text",
|
| 558 |
+
placeholder="Enter any text in any of 204 supported languages...",
|
| 559 |
+
lines=10
|
| 560 |
+
)
|
| 561 |
+
compress_btn = gr.Button("🗜️ Compress", variant="primary")
|
| 562 |
+
|
| 563 |
+
with gr.Column():
|
| 564 |
+
compression_output = gr.Textbox(
|
| 565 |
+
label="Compression Results",
|
| 566 |
+
lines=10
|
| 567 |
+
)
|
| 568 |
+
compression_stats = gr.JSON(label="Detailed Statistics")
|
| 569 |
+
|
| 570 |
+
with gr.TabItem("🔄 Reconstruction Test"):
|
| 571 |
+
gr.Markdown("### Test compression and reconstruction accuracy")
|
| 572 |
+
with gr.Row():
|
| 573 |
+
with gr.Column():
|
| 574 |
+
recon_input = gr.Textbox(
|
| 575 |
+
label="Text to Reconstruct",
|
| 576 |
+
placeholder="Enter text to compress and reconstruct...",
|
| 577 |
+
lines=8
|
| 578 |
+
)
|
| 579 |
+
with gr.Row():
|
| 580 |
+
temperature = gr.Slider(
|
| 581 |
+
minimum=0.01, maximum=1.0, value=0.1, step=0.01,
|
| 582 |
+
label="Temperature (0.1 = Precise)"
|
| 583 |
+
)
|
| 584 |
+
top_k = gr.Slider(
|
| 585 |
+
minimum=1, maximum=50, value=10, step=1,
|
| 586 |
+
label="Top-K (10 = Deterministic)"
|
| 587 |
+
)
|
| 588 |
+
reconstruct_btn = gr.Button("🔄 Reconstruct", variant="primary")
|
| 589 |
+
|
| 590 |
+
with gr.Column():
|
| 591 |
+
reconstruction_output = gr.Textbox(
|
| 592 |
+
label="Reconstruction Results",
|
| 593 |
+
lines=15
|
| 594 |
+
)
|
| 595 |
+
|
| 596 |
+
with gr.TabItem("📊 Tokenizer Comparison"):
|
| 597 |
+
gr.Markdown("### Compare with traditional tokenizers (BPE, SentencePiece)")
|
| 598 |
+
with gr.Row():
|
| 599 |
+
with gr.Column():
|
| 600 |
+
compare_input = gr.Textbox(
|
| 601 |
+
label="Text for Comparison",
|
| 602 |
+
placeholder="Enter text to compare tokenization efficiency...",
|
| 603 |
+
lines=8
|
| 604 |
+
)
|
| 605 |
+
compare_btn = gr.Button("📊 Compare", variant="primary")
|
| 606 |
+
|
| 607 |
+
with gr.Column():
|
| 608 |
+
comparison_output = gr.Markdown()
|
| 609 |
+
|
| 610 |
+
with gr.TabItem("📝 Example Tests"):
|
| 611 |
+
gr.Markdown("### Pre-configured test examples in various languages")
|
| 612 |
+
gr.Examples(
|
| 613 |
+
examples=[
|
| 614 |
+
["The quick brown fox jumps over the lazy dog."],
|
| 615 |
+
["안녕하세요. 오늘 날씨가 정말 좋네요!"],
|
| 616 |
+
["今天天气很好,适合出去散步。"],
|
| 617 |
+
["Bonjour le monde! Comment allez-vous aujourd'hui?"],
|
| 618 |
+
["مرحبا بالعالم! كيف حالك اليوم؟"],
|
| 619 |
+
["こんにちは世界!今日はいい天気ですね。"],
|
| 620 |
+
["Привет мир! Как дела сегодня?"],
|
| 621 |
+
["Multi-language: Hello 안녕하세요 你好 こんにちは"]
|
| 622 |
+
],
|
| 623 |
+
inputs=[input_text]
|
| 624 |
+
)
|
| 625 |
|
| 626 |
+
with gr.TabItem("📚 Documentation"):
|
| 627 |
+
gr.Markdown("""
|
| 628 |
+
### Technical Details
|
| 629 |
+
|
| 630 |
+
**Model Architecture:**
|
| 631 |
+
- **Encoder:** 4-layer transformer with progressive splitting mechanism
|
| 632 |
+
- **Decoder:** 6-layer transformer with multi-level cross-attention
|
| 633 |
+
- **Token Selection:** Gumbel-Softmax with temperature annealing
|
| 634 |
+
- **Attention:** Multi-Query Attention (MQA) with 8x KV cache reduction
|
| 635 |
+
|
| 636 |
+
**Training Details:**
|
| 637 |
+
- **Dataset:** FLORES-200 (204 languages)
|
| 638 |
+
- **Epochs:** 100
|
| 639 |
+
- **Batch Size:** 128
|
| 640 |
+
- **Learning Rate:** 3e-5 with cosine annealing
|
| 641 |
+
- **Loss:** Weighted combination of reconstruction, compression, and boundary losses
|
| 642 |
+
|
| 643 |
+
**Compression Mechanism:**
|
| 644 |
+
- Input text is split into 48-byte chunks (46 content + 2 special tokens)
|
| 645 |
+
- Each chunk is compressed to exactly 3 semantic tokens
|
| 646 |
+
- Achieves fixed 16:1 compression ratio
|
| 647 |
+
- Uses sliding window with 8-byte overlap for long texts
|
| 648 |
+
|
| 649 |
+
**Use Cases:**
|
| 650 |
+
1. **LLM Cost Reduction:** Reduce token counts by ~75%
|
| 651 |
+
2. **Cross-modal Communication:** Universal embedding layer
|
| 652 |
+
3. **Multilingual Processing:** Unified representation for 204 languages
|
| 653 |
+
4. **Bandwidth Optimization:** Compress text for transmission
|
| 654 |
+
|
| 655 |
+
**Limitations:**
|
| 656 |
+
- Mixed language text may have lower reconstruction accuracy
|
| 657 |
+
- Optimized for semantic preservation, not exact character matching
|
| 658 |
+
- Requires GPU for optimal performance
|
| 659 |
+
|
| 660 |
+
**Citation:**
|
| 661 |
+
```
|
| 662 |
+
@model{b2nl2024,
|
| 663 |
+
title={B2NL-IntelligentTokenizer: Progressive Byte-to-Natural Language Tokenization},
|
| 664 |
+
author={ggunio},
|
| 665 |
+
year={2024},
|
| 666 |
+
version={6.2.1},
|
| 667 |
+
url={https://huggingface.co/ggunio/B2NL-IntelligentTokenizer}
|
| 668 |
+
}
|
| 669 |
+
```
|
| 670 |
+
""")
|
| 671 |
+
|
| 672 |
+
# Event handlers
|
| 673 |
+
def load_model_handler(path):
|
| 674 |
+
try:
|
| 675 |
+
if not path:
|
| 676 |
+
return "⚠️ Please provide a checkpoint path"
|
| 677 |
+
load_model(path)
|
| 678 |
+
return "✅ Model loaded successfully! Ready for inference."
|
| 679 |
+
except Exception as e:
|
| 680 |
+
return f"❌ Error loading model: {str(e)}"
|
| 681 |
|
| 682 |
+
load_btn.click(
|
| 683 |
+
load_model_handler,
|
| 684 |
+
inputs=[checkpoint_path],
|
| 685 |
+
outputs=[status]
|
| 686 |
)
|
| 687 |
|
| 688 |
+
compress_btn.click(
|
| 689 |
+
compress_text,
|
| 690 |
+
inputs=[input_text],
|
| 691 |
+
outputs=[compression_output, compression_stats]
|
|
|
|
|
|
|
| 692 |
)
|
| 693 |
|
| 694 |
+
reconstruct_btn.click(
|
| 695 |
+
reconstruct_text,
|
| 696 |
+
inputs=[recon_input, temperature, top_k],
|
| 697 |
+
outputs=[reconstruction_output]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 698 |
)
|
| 699 |
|
| 700 |
+
compare_btn.click(
|
| 701 |
+
compare_performance,
|
| 702 |
+
inputs=[compare_input],
|
| 703 |
+
outputs=[comparison_output]
|
| 704 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 705 |
|
| 706 |
+
# Auto-load model on startup
|
| 707 |
+
demo.load(
|
| 708 |
+
lambda: "⏳ Ready to load model. Click 'Load Model' to begin.",
|
| 709 |
+
outputs=[status]
|
| 710 |
)
|
| 711 |
|
| 712 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 713 |
|
| 714 |
if __name__ == "__main__":
|
| 715 |
+
# Create and launch demo
|
| 716 |
+
demo = create_demo()
|
| 717 |
+
|
| 718 |
+
print("="*60)
|
| 719 |
+
print("B2NL-IntelligentTokenizer v6.2.1 - Gradio Demo")
|
| 720 |
+
print("="*60)
|
| 721 |
+
print("Launching interactive demo...")
|
| 722 |
+
print("Share link will be generated for public access")
|
| 723 |
+
print("="*60)
|
| 724 |
+
|
| 725 |
+
demo.launch(
|
| 726 |
+
server_name="0.0.0.0",
|
| 727 |
+
server_port=7860,
|
| 728 |
+
share=True, # Create public link
|
| 729 |
+
debug=False # Set to True for debugging
|
| 730 |
+
)
|