Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.linear_model import LinearRegression
|
4 |
+
from sklearn.model_selection import train_test_split
|
5 |
+
from sklearn.preprocessing import OneHotEncoder
|
6 |
+
|
7 |
+
def trend_analysis(df, target_column):
|
8 |
+
# Handle categorical variables
|
9 |
+
categorical_columns = ['country', 'public/pro', 'language']
|
10 |
+
df = pd.get_dummies(df, columns=categorical_columns)
|
11 |
+
|
12 |
+
# Split the data into training and testing sets
|
13 |
+
X_train, X_test, y_train, y_test = train_test_split(df.drop(target_column, axis=1), df[target_column], test_size=0.2, random_state=42)
|
14 |
+
|
15 |
+
# Train the model
|
16 |
+
model = LinearRegression()
|
17 |
+
model.fit(X_train, y_train)
|
18 |
+
|
19 |
+
# Use the model to make predictions
|
20 |
+
df['prediction'] = model.predict(df.drop(target_column, axis=1))
|
21 |
+
|
22 |
+
return df
|
23 |
+
|
24 |
+
def process_csv(file_path):
|
25 |
+
try:
|
26 |
+
# Read CSV file
|
27 |
+
df = pd.read_csv(file_path, error_bad_lines=False)
|
28 |
+
|
29 |
+
# Perform trend analysis
|
30 |
+
target_column = 'unit price' # Replace with the name of your target column
|
31 |
+
df = trend_analysis(df, target_column)
|
32 |
+
|
33 |
+
# Save the processed DataFrame to a new CSV file (optional)
|
34 |
+
df.to_csv("processed_data.csv", index=False)
|
35 |
+
|
36 |
+
return "Processing completed. Check 'processed_data.csv' for results."
|
37 |
+
except Exception as e:
|
38 |
+
return f"Error: {str(e)}"
|
39 |
+
|
40 |
+
iface = gr.Interface(
|
41 |
+
fn=process_csv,
|
42 |
+
inputs=gr.File(),
|
43 |
+
outputs=gr.Textbox(),
|
44 |
+
live=True,
|
45 |
+
)
|
46 |
+
|
47 |
+
if __name__ == '__main__':
|
48 |
+
iface.launch()
|