gfhayworth commited on
Commit
8dd4ecb
1 Parent(s): 0e866c7

Delete app.py

Browse files
Files changed (1) hide show
  1. app.py +0 -109
app.py DELETED
@@ -1,109 +0,0 @@
1
- # -*- coding: utf-8 -*-
2
- """wiki_chat.ipynb
3
-
4
- Automatically generated by Colaboratory.
5
-
6
- Original file is located at
7
- https://colab.research.google.com/drive/1P5rJeCXRSsDJw_1ksnHmodH6ng2Ot5NW
8
- """
9
-
10
- # !pip install gradio
11
-
12
- # !pip install -U sentence-transformers
13
-
14
- # !pip install datasets
15
-
16
-
17
- import gradio as gr
18
- from sentence_transformers import SentenceTransformer, CrossEncoder, util
19
- from torch import tensor as torch_tensor
20
- from datasets import load_dataset
21
-
22
- """# import models"""
23
-
24
- bi_encoder = SentenceTransformer('multi-qa-MiniLM-L6-cos-v1')
25
- bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens
26
-
27
- #The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
28
- cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
29
-
30
- """# import datasets"""
31
- dataset = load_dataset("gfhayworth/wiki_mini", split='train')
32
- mypassages = list(dataset.to_pandas()['psg'])
33
-
34
- dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train')
35
- dataset_embed_pd = dataset_embed.to_pandas()
36
- mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
37
-
38
- def search(query, top_k=20, top_n = 1):
39
- question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
40
- question_embedding = question_embedding #.cuda()
41
- hits = util.semantic_search(question_embedding, mycorpus_embeddings, top_k=top_k)
42
- hits = hits[0] # Get the hits for the first query
43
-
44
- ##### Re-Ranking #####
45
- cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits]
46
- cross_scores = cross_encoder.predict(cross_inp)
47
-
48
- # Sort results by the cross-encoder scores
49
- for idx in range(len(cross_scores)):
50
- hits[idx]['cross-score'] = cross_scores[idx]
51
-
52
- hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
53
- predictions = hits[:top_n]
54
- return predictions
55
- # for hit in hits[0:3]:
56
- # print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
57
-
58
- def get_text(qry):
59
- predictions = search(qry)
60
- prediction_text = []
61
- for hit in predictions:
62
- prediction_text.append("{}".format(mypassages[hit['corpus_id']]))
63
- return prediction_text
64
-
65
- # def prt_rslt(qry):
66
- # rslt = get_text(qry)
67
- # for r in rslt:
68
- # print(r)
69
-
70
- # prt_rslt("who is the best rapper in the world?")
71
-
72
- """# chat example"""
73
-
74
- def chat(message, history):
75
- history = history or []
76
- message = message.lower()
77
-
78
- responses = get_text(message)
79
- for response in responses:
80
- history.append((message, response))
81
- return history, history
82
-
83
- css=".gradio-container {background-color: lightgray}"
84
-
85
- with gr.Blocks(css=css) as demo:
86
- history_state = gr.State()
87
- gr.Markdown('# WikiBot')
88
- title='Wikipedia Chatbot'
89
- description='chatbot with search on Wikipedia'
90
- with gr.Row():
91
- chatbot = gr.Chatbot()
92
- with gr.Row():
93
- message = gr.Textbox(label='Input your question here:',
94
- placeholder='How many countries are in Europe?',
95
- lines=1)
96
- submit = gr.Button(value='Send',
97
- variant='secondary').style(full_width=False)
98
- submit.click(chat,
99
- inputs=[message, history_state],
100
- outputs=[chatbot, history_state])
101
- gr.Examples(
102
- examples=["How many countries are in Europe?",
103
- "Was Roman Emperor Constantine I a Christian?",
104
- "Who is the best rapper in the world?"],
105
- inputs=message
106
- )
107
-
108
- demo.launch()
109
-