Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import spaces
|
4 |
+
import torch
|
5 |
+
from gradio_rerun import Rerun
|
6 |
+
import rerun as rr
|
7 |
+
import rerun.blueprint as rrb
|
8 |
+
from pathlib import Path
|
9 |
+
import uuid
|
10 |
+
|
11 |
+
from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result
|
12 |
+
from mini_dust3r.model import AsymmetricCroCo3DStereo
|
13 |
+
from mini_dust3r.utils.misc import (
|
14 |
+
fill_default_args,
|
15 |
+
freeze_all_params,
|
16 |
+
is_symmetrized,
|
17 |
+
interleave,
|
18 |
+
transpose_to_landscape,
|
19 |
+
)
|
20 |
+
|
21 |
+
from .head import Cat_MLP_LocalFeatures_DPT_Pts3d
|
22 |
+
|
23 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "CPU"
|
24 |
+
|
25 |
+
# model = AsymmetricCroCo3DStereo.from_pretrained(
|
26 |
+
# "naver/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
|
27 |
+
# ).to(DEVICE)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
from .linear_head import LinearPts3d
|
32 |
+
from .dpt_head import create_dpt_head
|
33 |
+
|
34 |
+
def head_factory(head_type, output_mode, net, has_conf=False):
|
35 |
+
"""" build a prediction head for the decoder
|
36 |
+
"""
|
37 |
+
if head_type == 'linear' and output_mode == 'pts3d':
|
38 |
+
return LinearPts3d(net, has_conf)
|
39 |
+
elif head_type == 'dpt' and output_mode == 'pts3d':
|
40 |
+
return create_dpt_head(net, has_conf=has_conf)
|
41 |
+
if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'):
|
42 |
+
local_feat_dim = int(output_mode[10:])
|
43 |
+
assert net.dec_depth > 9
|
44 |
+
l2 = net.dec_depth
|
45 |
+
feature_dim = 256
|
46 |
+
last_dim = feature_dim // 2
|
47 |
+
out_nchan = 3
|
48 |
+
ed = net.enc_embed_dim
|
49 |
+
dd = net.dec_embed_dim
|
50 |
+
return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf,
|
51 |
+
num_channels=out_nchan + has_conf,
|
52 |
+
feature_dim=feature_dim,
|
53 |
+
last_dim=last_dim,
|
54 |
+
hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
|
55 |
+
dim_tokens=[ed, dd, dd, dd],
|
56 |
+
postprocess=postprocess,
|
57 |
+
depth_mode=net.depth_mode,
|
58 |
+
conf_mode=net.conf_mode,
|
59 |
+
head_type='regression')
|
60 |
+
else:
|
61 |
+
raise NotImplementedError(f"unexpected {head_type=} and {output_mode=}")
|
62 |
+
|
63 |
+
|
64 |
+
class AsymmetricMASt3R(AsymmetricCroCo3DStereo):
|
65 |
+
def __init__(self, desc_mode=('norm'), two_confs=False, desc_conf_mode=None, **kwargs):
|
66 |
+
self.desc_mode = desc_mode
|
67 |
+
self.two_confs = two_confs
|
68 |
+
self.desc_conf_mode = desc_conf_mode
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
@classmethod
|
72 |
+
def from_pretrained(cls, pretrained_model_name_or_path, **kw):
|
73 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
74 |
+
return load_model(pretrained_model_name_or_path, device='cpu')
|
75 |
+
else:
|
76 |
+
return super(AsymmetricMASt3R, cls).from_pretrained(pretrained_model_name_or_path, **kw)
|
77 |
+
|
78 |
+
def set_downstream_head(self, output_mode, head_type, landscape_only, depth_mode, conf_mode, patch_size, img_size, **kw):
|
79 |
+
assert img_size[0] % patch_size == 0 and img_size[
|
80 |
+
1] % patch_size == 0, f'{img_size=} must be multiple of {patch_size=}'
|
81 |
+
self.output_mode = output_mode
|
82 |
+
self.head_type = head_type
|
83 |
+
self.depth_mode = depth_mode
|
84 |
+
self.conf_mode = conf_mode
|
85 |
+
if self.desc_conf_mode is None:
|
86 |
+
self.desc_conf_mode = conf_mode
|
87 |
+
# allocate heads
|
88 |
+
self.downstream_head1 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
|
89 |
+
self.downstream_head2 = head_factory(head_type, output_mode, self, has_conf=bool(conf_mode))
|
90 |
+
# magic wrapper
|
91 |
+
self.head1 = transpose_to_landscape(self.downstream_head1, activate=landscape_only)
|
92 |
+
self.head2 = transpose_to_landscape(self.downstream_head2, activate=landscape_only)
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
model = AsymmetricMASt3R.from_pretrained(
|
97 |
+
"naver/MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric").to(DEVICE)
|
98 |
+
|
99 |
+
|
100 |
+
def create_blueprint(image_name_list: list[str], log_path: Path) -> rrb.Blueprint:
|
101 |
+
# dont show 2d views if there are more than 4 images as to not clutter the view
|
102 |
+
if len(image_name_list) > 4:
|
103 |
+
blueprint = rrb.Blueprint(
|
104 |
+
rrb.Horizontal(
|
105 |
+
rrb.Spatial3DView(origin=f"{log_path}"),
|
106 |
+
),
|
107 |
+
collapse_panels=True,
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
blueprint = rrb.Blueprint(
|
111 |
+
rrb.Horizontal(
|
112 |
+
contents=[
|
113 |
+
rrb.Spatial3DView(origin=f"{log_path}"),
|
114 |
+
rrb.Vertical(
|
115 |
+
contents=[
|
116 |
+
rrb.Spatial2DView(
|
117 |
+
origin=f"{log_path}/camera_{i}/pinhole/",
|
118 |
+
contents=[
|
119 |
+
"+ $origin/**",
|
120 |
+
],
|
121 |
+
)
|
122 |
+
for i in range(len(image_name_list))
|
123 |
+
]
|
124 |
+
),
|
125 |
+
],
|
126 |
+
column_shares=[3, 1],
|
127 |
+
),
|
128 |
+
collapse_panels=True,
|
129 |
+
)
|
130 |
+
return blueprint
|
131 |
+
|
132 |
+
|
133 |
+
@spaces.GPU
|
134 |
+
def predict(image_name_list: list[str] | str):
|
135 |
+
# check if is list or string and if not raise error
|
136 |
+
if not isinstance(image_name_list, list) and not isinstance(image_name_list, str):
|
137 |
+
raise gr.Error(
|
138 |
+
f"Input must be a list of strings or a string, got: {type(image_name_list)}"
|
139 |
+
)
|
140 |
+
uuid_str = str(uuid.uuid4())
|
141 |
+
filename = Path(f"/tmp/gradio/{uuid_str}.rrd")
|
142 |
+
rr.init(f"{uuid_str}")
|
143 |
+
log_path = Path("world")
|
144 |
+
|
145 |
+
if isinstance(image_name_list, str):
|
146 |
+
image_name_list = [image_name_list]
|
147 |
+
|
148 |
+
optimized_results: OptimizedResult = inferece_dust3r(
|
149 |
+
image_dir_or_list=image_name_list,
|
150 |
+
model=model,
|
151 |
+
device=DEVICE,
|
152 |
+
batch_size=1,
|
153 |
+
)
|
154 |
+
|
155 |
+
blueprint: rrb.Blueprint = create_blueprint(image_name_list, log_path)
|
156 |
+
rr.send_blueprint(blueprint)
|
157 |
+
|
158 |
+
rr.set_time_sequence("sequence", 0)
|
159 |
+
log_optimized_result(optimized_results, log_path)
|
160 |
+
rr.save(filename.as_posix())
|
161 |
+
return filename.as_posix()
|
162 |
+
|
163 |
+
|
164 |
+
with gr.Blocks(
|
165 |
+
css=""".gradio-container {margin: 0 !important; min-width: 100%};""",
|
166 |
+
title="Mini-DUSt3R Demo",
|
167 |
+
) as demo:
|
168 |
+
# scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
|
169 |
+
gr.HTML('<h2 style="text-align: center;">Mini-DUSt3R Demo</h2>')
|
170 |
+
gr.HTML(
|
171 |
+
'<p style="text-align: center;">Unofficial DUSt3R demo using the mini-dust3r pip package</p>'
|
172 |
+
)
|
173 |
+
gr.HTML(
|
174 |
+
'<p style="text-align: center;">More info <a href="https://github.com/pablovela5620/mini-dust3r">here</a></p>'
|
175 |
+
)
|
176 |
+
with gr.Tab(label="Single Image"):
|
177 |
+
with gr.Column():
|
178 |
+
single_image = gr.Image(type="filepath", height=300)
|
179 |
+
run_btn_single = gr.Button("Run")
|
180 |
+
rerun_viewer_single = Rerun(height=900)
|
181 |
+
run_btn_single.click(
|
182 |
+
fn=predict, inputs=[single_image], outputs=[rerun_viewer_single]
|
183 |
+
)
|
184 |
+
|
185 |
+
example_single_dir = Path("examples/single_image")
|
186 |
+
example_single_files = sorted(example_single_dir.glob("*.png"))
|
187 |
+
|
188 |
+
examples_single = gr.Examples(
|
189 |
+
examples=example_single_files,
|
190 |
+
inputs=[single_image],
|
191 |
+
outputs=[rerun_viewer_single],
|
192 |
+
fn=predict,
|
193 |
+
cache_examples="lazy",
|
194 |
+
)
|
195 |
+
with gr.Tab(label="Multi Image"):
|
196 |
+
with gr.Column():
|
197 |
+
multi_files = gr.File(file_count="multiple")
|
198 |
+
run_btn_multi = gr.Button("Run")
|
199 |
+
rerun_viewer_multi = Rerun(height=900)
|
200 |
+
run_btn_multi.click(
|
201 |
+
fn=predict, inputs=[multi_files], outputs=[rerun_viewer_multi]
|
202 |
+
)
|
203 |
+
|
204 |
+
|
205 |
+
demo.launch()
|