Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler | |
from diffusers.utils import load_image | |
from PIL import Image | |
import torch | |
import numpy as np | |
import cv2 | |
import gradio as gr | |
from torchvision import transforms | |
import fire | |
import os | |
controlnet = ControlNetModel.from_pretrained( | |
"geyongtao/HumanWild", | |
torch_dtype=torch.float16 | |
).to('cuda') | |
vae = AutoencoderKL.from_pretrained( | |
"madebyollin/sdxl-vae-fp16-fix", | |
torch_dtype=torch.float16).to("cuda") | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
controlnet=controlnet, | |
vae=vae, | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
low_cpu_mem_usage=True, | |
offload_state_dict=True, | |
).to('cuda') | |
pipe.controlnet.to(memory_format=torch.channels_last) | |
# pipe.enable_xformers_memory_efficient_attention() | |
pipe.force_zeros_for_empty_prompt = False | |
def resize_image(image): | |
image = image.convert('RGB') | |
current_size = image.size | |
if current_size[0] > current_size[1]: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1])) | |
else: | |
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0])) | |
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024)) | |
return resized_image | |
def get_normal_map(image): | |
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") | |
with torch.no_grad(), torch.autocast("cuda"): | |
depth_map = depth_estimator(image).predicted_depth | |
image = transforms.functional.center_crop(image, min(image.shape[-2:])) | |
depth_map = torch.nn.functional.interpolate( | |
depth_map.unsqueeze(1), | |
size=(1024, 1024), | |
mode="bicubic", | |
align_corners=False, | |
) | |
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) | |
depth_map = (depth_map - depth_min) / (depth_max - depth_min) | |
image = torch.cat([depth_map] * 3, dim=1) | |
image = image.permute(0, 2, 3, 1).cpu().numpy()[0] | |
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) | |
return image | |
def generate_(prompt, negative_prompt, normal_image, num_steps, controlnet_conditioning_scale, seed): | |
generator = torch.Generator("cuda").manual_seed(seed) | |
images = pipe( | |
prompt, | |
negative_prompt=negative_prompt, | |
image=normal_image, | |
num_inference_steps=num_steps, | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
num_images_per_prompt=2, | |
generator=generator, | |
).images | |
return images | |
def process(normal_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed): | |
# resize input_image to 1024x1024 | |
normal_image = resize_image(normal_image) | |
# depth_image = get_depth_map(input_image) | |
images = generate_(prompt, negative_prompt, normal_image, num_steps, controlnet_conditioning_scale, seed) | |
return [images[0], images[1]] | |
def run_demo(): | |
_TITLE = '''3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models''' | |
block = gr.Blocks().queue() | |
with block: | |
gr.Markdown("# 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models ") | |
gr.HTML(''' | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
This is a demo for Surface Normal ControlNet that using | |
<a href="https://huggingface.co/geyongtao/HumanWild" target="_blank"> HumanWild model</a> pretrained weight. | |
<a style="display:inline-block; margin-left: .5em" href='https://github.com/YongtaoGe/WildHuman/'><img src='https://img.shields.io/github/stars/YongtaoGe/WildHuman?style=social' /></a> | |
</p> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam | |
example_folder = os.path.join(os.path.dirname(__file__), "./assets") | |
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] | |
gr.Examples( | |
examples=example_fns, | |
inputs=[input_image], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=30 | |
) | |
prompt = gr.Textbox(label="Prompt", value="a person, in the wild") | |
negative_prompt = gr.Textbox(visible=False, label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers") | |
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=50, value=30, step=1) | |
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=1.0, value=0.95, step=0.05) | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,) | |
run_button = gr.Button(value="Run") | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[2], height='auto') | |
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed] | |
run_button.click(fn=process, inputs=ips, outputs=[result_gallery]) | |
block.launch(debug = True) | |
if __name__ == '__main__': | |
fire.Fire(run_demo) |