Spaces:
Running
Running
# md_knowledge_base_v1.py | |
import os | |
import json | |
import requests | |
import hashlib | |
from pathlib import Path | |
from typing import List, Dict, Optional | |
import time | |
from datetime import datetime | |
class MarkdownKnowledgeBase: | |
def __init__(self, api_token: str, base_url: str = "https://api.siliconflow.cn/v1"): | |
""" | |
初始化知识库构建器 | |
Args: | |
api_token: SiliconFlow API token | |
base_url: API 基础URL | |
""" | |
self.api_token = api_token | |
self.base_url = base_url | |
self.headers = { | |
"Authorization": f"Bearer {api_token}", | |
"Content-Type": "application/json" | |
} | |
self.knowledge_base = [] | |
def scan_markdown_files(self, folder_path: str) -> List[str]: | |
# ... (此函数未改变) | |
md_files = [] | |
folder = Path(folder_path) | |
if not folder.exists(): | |
raise FileNotFoundError(f"文件夹不存在: {folder_path}") | |
try: | |
for md_file in folder.rglob("*.md"): | |
if md_file.is_file(): | |
file_path = str(md_file.resolve()) | |
try: | |
if os.path.exists(file_path) and os.path.isfile(file_path): | |
md_files.append(file_path) | |
else: | |
print(f"跳过无法访问的文件: {file_path}") | |
except Exception as e: | |
print(f"跳过问题文件: {md_file} - {e}") | |
continue | |
except Exception as e: | |
print(f"扫描文件夹时出错: {e}") | |
print(f"找到 {len(md_files)} 个可访问的 Markdown 文件") | |
return md_files | |
def read_markdown_content(self, file_path: str) -> Dict: | |
# ... (此函数未改变) | |
try: | |
file_path = os.path.normpath(file_path) | |
if not os.path.exists(file_path): | |
print(f"文件不存在: {file_path}") | |
return None | |
encodings = ['utf-8', 'utf-8-sig', 'gbk', 'cp1252', 'latin1'] | |
content = None | |
used_encoding = None | |
for encoding in encodings: | |
try: | |
with open(file_path, 'r', encoding=encoding) as file: | |
content = file.read() | |
used_encoding = encoding | |
break | |
except UnicodeDecodeError: | |
continue | |
except Exception as e: | |
print(f"编码 {encoding} 读取失败: {e}") | |
continue | |
if content is None: | |
print(f"无法读取文件 {file_path}: 所有编码都失败") | |
return None | |
file_hash = hashlib.md5(content.encode('utf-8')).hexdigest() | |
return { | |
'file_path': file_path, | |
'file_name': os.path.basename(file_path), | |
'content': content, | |
'hash': file_hash, | |
'size': len(content), | |
'encoding': used_encoding, | |
'modified_time': datetime.fromtimestamp(os.path.getmtime(file_path)).isoformat() | |
} | |
except Exception as e: | |
print(f"读取文件失败 {file_path}: {e}") | |
return None | |
def chunk_text(self, text: str, chunk_size: int = 4096, overlap: int = 400) -> List[str]: | |
# ... (默认参数已更新以匹配bge-m3) | |
if len(text) <= chunk_size: | |
return [text] | |
chunks = [] | |
start = 0 | |
while start < len(text): | |
end = start + chunk_size | |
if end < len(text): | |
for separator in ['\n\n', '。', '\n', ' ']: | |
split_pos = text.rfind(separator, start, end) | |
if split_pos > start: | |
end = split_pos + len(separator) | |
break | |
chunk = text[start:end].strip() | |
if chunk: | |
chunks.append(chunk) | |
start = max(start + 1, end - overlap) | |
return chunks | |
def get_embeddings(self, texts: List[str], model: str = "BAAI/bge-m3") -> List[List[float]]: | |
""" | |
获取文本向量 | |
Args: | |
texts: 文本列表 | |
model: 嵌入模型名称 - **已更新为 bge-m3** | |
Returns: | |
向量列表 | |
""" | |
url = f"{self.base_url}/embeddings" | |
embeddings = [] | |
# **优化**: 增加批处理大小以提高效率,并减少等待时间 | |
batch_size = 32 | |
total_batches = (len(texts) + batch_size - 1) // batch_size | |
print(f"开始处理 {len(texts)} 个文本块,分为 {total_batches} 批") | |
for batch_idx in range(0, len(texts), batch_size): | |
batch = texts[batch_idx:batch_idx + batch_size] | |
current_batch = batch_idx // batch_size + 1 | |
print(f"处理批次 {current_batch}/{total_batches} ({len(batch)} 个文本)") | |
payload = {"model": model, "input": batch, "encoding_format": "float"} | |
max_retries = 3 | |
for attempt in range(max_retries): | |
try: | |
response = requests.post(url, json=payload, headers=self.headers, timeout=60) # 增加超时 | |
response.raise_for_status() | |
result = response.json() | |
if 'data' in result: | |
batch_embeddings = [item['embedding'] for item in result['data']] | |
embeddings.extend(batch_embeddings) | |
print(f" ✓ 成功获取 {len(batch_embeddings)} 个向量") | |
break | |
else: | |
print(f" ✗ API 返回格式异常: {result}") | |
embeddings.extend([[] for _ in batch]) | |
break | |
except requests.exceptions.RequestException as e: | |
print(f" ✗ 请求失败 (尝试 {attempt + 1}/{max_retries}): {e}") | |
if attempt == max_retries - 1: | |
embeddings.extend([[] for _ in batch]) | |
if attempt < max_retries - 1: | |
time.sleep(2 ** attempt) | |
# **优化**: 缩短请求间隔 | |
time.sleep(0.1) | |
print(f"向量生成完成: {len([e for e in embeddings if e])} 成功, {len([e for e in embeddings if not e])} 失败") | |
return embeddings | |
def rerank_documents(self, query: str, documents: List[str], | |
model: str = "BAAI/bge-reranker-v2-m3", | |
top_n: int = 10) -> Dict: | |
""" | |
对文档进行重排 - **已更新为 bge-reranker-v2-m3** | |
""" | |
url = f"{self.base_url}/rerank" | |
payload = { | |
"model": model, "query": query, "documents": documents, | |
"top_n": min(top_n, len(documents)), "return_documents": True | |
} | |
try: | |
response = requests.post(url, json=payload, headers=self.headers) | |
response.raise_for_status() | |
return response.json() | |
except Exception as e: | |
print(f"重排失败: {e}") | |
return {"results": []} | |
def build_knowledge_base(self, folder_path: str, chunk_size: int = 4096, overlap: int = 400, | |
max_files: int = None, sample_mode: str = "random"): | |
# ... (此函数未改变逻辑, 但默认参数已更新) | |
print("开始构建知识库...") | |
md_files = self.scan_markdown_files(folder_path) | |
if not md_files: | |
print("没有找到可处理的 Markdown 文件") | |
return | |
if max_files and len(md_files) > max_files: | |
print(f"文件数量过多({len(md_files)}),采用{sample_mode}策略选择{max_files}个文件") | |
if sample_mode == "random": | |
import random | |
md_files = random.sample(md_files, max_files) | |
elif sample_mode == "largest": | |
file_sizes = sorted([(fp, os.path.getsize(fp)) for fp in md_files], key=lambda x: x[1], reverse=True) | |
md_files = [fp for fp, _ in file_sizes[:max_files]] | |
elif sample_mode == "recent": | |
file_times = sorted([(fp, os.path.getmtime(fp)) for fp in md_files], key=lambda x: x[1], reverse=True) | |
md_files = [fp for fp, _ in file_times[:max_files]] | |
print(f"将处理 {len(md_files)} 个文件") | |
all_chunks, chunk_metadata = [], [] | |
processed_files, skipped_files = 0, 0 | |
for i, file_path in enumerate(md_files, 1): | |
print(f"处理文件 {i}/{len(md_files)}: {os.path.basename(file_path)}") | |
file_info = self.read_markdown_content(file_path) | |
if not file_info or len(file_info['content'].strip()) < 50: | |
skipped_files += 1 | |
continue | |
chunks = self.chunk_text(file_info['content'], chunk_size, overlap) | |
processed_files += 1 | |
for j, chunk in enumerate(chunks): | |
if len(chunk.strip()) > 20: | |
all_chunks.append(chunk) | |
chunk_metadata.append({'file_path': file_info['file_path'], 'file_name': file_info['file_name'], 'chunk_index': j, 'chunk_count': len(chunks), 'file_hash': file_info['hash']}) | |
print(f"成功处理 {processed_files} 个文件,跳过 {skipped_files} 个文件") | |
print(f"总共生成 {len(all_chunks)} 个文本块") | |
if not all_chunks: | |
print("没有有效的文本块,知识库构建失败") | |
return | |
print("开始生成向量...") | |
embeddings = self.get_embeddings(all_chunks) | |
self.knowledge_base = [] | |
valid_embeddings = 0 | |
for i, (chunk, embedding, metadata) in enumerate(zip(all_chunks, embeddings, chunk_metadata)): | |
if embedding: | |
self.knowledge_base.append({'id': len(self.knowledge_base), 'content': chunk, 'embedding': embedding, 'metadata': metadata}) | |
valid_embeddings += 1 | |
print(f"知识库构建完成! 有效向量: {valid_embeddings}, 总条目: {len(self.knowledge_base)}") | |
def search(self, query: str, top_k: int = 5, use_rerank: bool = True) -> List[Dict]: | |
# ... (此函数未改变) | |
if not self.knowledge_base: return [] | |
query_embedding = self.get_embeddings([query])[0] | |
if not query_embedding: return [] | |
import numpy as np | |
query_embedding_norm = np.linalg.norm(query_embedding) | |
if query_embedding_norm == 0: return [] | |
similarities = [] | |
for item in self.knowledge_base: | |
if not item['embedding']: | |
similarities.append(0) | |
continue | |
item_embedding_norm = np.linalg.norm(item['embedding']) | |
if item_embedding_norm == 0: | |
similarities.append(0) | |
else: | |
similarity = np.dot(query_embedding, item['embedding']) / (query_embedding_norm * item_embedding_norm) | |
similarities.append(similarity) | |
top_results_indices = sorted(range(len(similarities)), key=lambda i: similarities[i], reverse=True)[:min(top_k * 3, len(similarities))] | |
if use_rerank and len(top_results_indices) > 1: | |
documents_to_rerank = [self.knowledge_base[i]['content'] for i in top_results_indices] | |
rerank_result = self.rerank_documents(query, documents_to_rerank, top_n=top_k) | |
if rerank_result.get('results'): | |
final_results = [] | |
for res in rerank_result['results']: | |
original_index = top_results_indices[res['index']] | |
item = self.knowledge_base[original_index].copy() | |
item['relevance_score'] = res['relevance_score'] | |
final_results.append(item) | |
return final_results[:top_k] | |
return [self.knowledge_base[i] for i in top_results_indices[:top_k]] | |
def save_knowledge_base(self, output_path: str): | |
with open(output_path, 'w', encoding='utf-8') as f: | |
json.dump(self.knowledge_base, f, ensure_ascii=False, indent=2) | |
print(f"知识库已保存到: {output_path}") | |
def load_knowledge_base(self, input_path: str): | |
with open(input_path, 'r', encoding='utf-8') as f: | |
self.knowledge_base = json.load(f) | |
print(f"知识库已从 {input_path} 加载,包含 {len(self.knowledge_base)} 个条目") | |