georgesung
commited on
Commit
•
8cf6e52
1
Parent(s):
7a57d84
Not using vllm
Browse files
app.py
CHANGED
@@ -1,99 +1,78 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
import gradio as gr
|
4 |
import torch
|
5 |
-
from transformers import (AutoConfig, AutoModel, AutoModelForSeq2SeqLM,
|
6 |
-
AutoTokenizer, LlamaForCausalLM, LlamaTokenizer)
|
7 |
-
from vllm import LLM, SamplingParams
|
8 |
-
|
9 |
-
model_id = "georgesung/llama2_7b_chat_uncensored"
|
10 |
-
|
11 |
-
prompt_config = {
|
12 |
-
"system_header": None,
|
13 |
-
"system_footer": None,
|
14 |
-
"user_header": "### HUMAN:",
|
15 |
-
"user_footer": None,
|
16 |
-
"input_header": None,
|
17 |
-
"response_header": "### RESPONSE:",
|
18 |
-
}
|
19 |
-
|
20 |
-
def get_llm_response_chat(prompt):
|
21 |
-
outputs = llm.generate(prompt, sampling_params)
|
22 |
-
output = outputs[0].outputs[0].text
|
23 |
-
|
24 |
-
# Remove trailing eos token
|
25 |
-
eos_token = llm.get_tokenizer().eos_token
|
26 |
-
if output.endswith(eos_token):
|
27 |
-
output = output[:-len(eos_token)]
|
28 |
-
return output
|
29 |
-
|
30 |
-
def hist_to_prompt(history):
|
31 |
-
prompt = ""
|
32 |
-
if prompt_config["system_header"]:
|
33 |
-
system_footer = ""
|
34 |
-
if prompt_config["system_footer"]:
|
35 |
-
system_footer = prompt_config["system_footer"]
|
36 |
-
prompt += f"{prompt_config['system_header']}\n{SYSTEM_MESSAGE}{system_footer}\n\n"
|
37 |
-
|
38 |
-
for i, (human_text, bot_text) in enumerate(history):
|
39 |
-
user_footer = ""
|
40 |
-
if prompt_config["user_footer"]:
|
41 |
-
user_footer = prompt_config["user_footer"]
|
42 |
-
|
43 |
-
prompt += f"{prompt_config['user_header']}\n{human_text}{user_footer}\n\n"
|
44 |
-
|
45 |
-
prompt += f"{prompt_config['response_header']}\n"
|
46 |
-
|
47 |
-
if bot_text:
|
48 |
-
prompt += f"{bot_text}\n\n"
|
49 |
-
return prompt
|
50 |
-
|
51 |
-
def get_bot_response(text):
|
52 |
-
bot_text_index = text.rfind(prompt_config['response_header'])
|
53 |
-
if bot_text_index != -1:
|
54 |
-
text = text[bot_text_index + len(prompt_config['response_header']):].strip()
|
55 |
-
return text
|
56 |
-
|
57 |
-
def main():
|
58 |
-
# RE llama tokenizer:
|
59 |
-
# RuntimeError: Failed to load the tokenizer.
|
60 |
-
# If you are using a LLaMA-based model, use 'hf-internal-testing/llama-tokenizer' instead of the original tokenizer.
|
61 |
-
llm = LLM(model=model_id, tokenizer='hf-internal-testing/llama-tokenizer')
|
62 |
-
|
63 |
-
sampling_params = SamplingParams(temperature=0.01, top_p=0.1, top_k=40, max_tokens=2048)
|
64 |
-
|
65 |
-
tokenizer = llm.get_tokenizer()
|
66 |
|
67 |
-
|
68 |
-
gr.Markdown(
|
69 |
-
"""
|
70 |
-
# Let's chat
|
71 |
-
""")
|
72 |
-
|
73 |
-
chatbot = gr.Chatbot()
|
74 |
-
msg = gr.Textbox()
|
75 |
-
clear = gr.Button("Clear")
|
76 |
-
|
77 |
-
def user(user_message, history):
|
78 |
-
return "", history + [[user_message, None]]
|
79 |
-
|
80 |
-
def bot(history):
|
81 |
-
hist_text = hist_to_prompt(history)
|
82 |
-
|
83 |
-
bot_message = get_llm_response_chat(hist_text) #+ tokenizer.eos_token
|
84 |
-
history[-1][1] = bot_message # add bot message to overall history
|
85 |
-
|
86 |
-
return history
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
92 |
|
93 |
-
|
94 |
-
|
|
|
95 |
|
|
|
96 |
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline
|
|
|
|
|
2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# LLM helper functions
|
7 |
+
def get_response_text(data):
|
8 |
+
text = data[0]["generated_text"]
|
|
|
9 |
|
10 |
+
assistant_text_index = text.rfind('### RESPONSE:')
|
11 |
+
if assistant_text_index != -1:
|
12 |
+
text = text[assistant_text_index+len('### RESPONSE:'):].strip()
|
13 |
|
14 |
+
return text
|
15 |
|
16 |
+
def get_llm_response(prompt, pipe):
|
17 |
+
raw_output = pipe(prompt)
|
18 |
+
text = get_response_text(raw_output)
|
19 |
+
return text
|
20 |
|
21 |
+
# Load LLM
|
22 |
+
model_id = "georgesung/llama2_7b_chat_uncensored"
|
23 |
+
tokenizer = LlamaTokenizer.from_pretrained(model_id)
|
24 |
+
model = LlamaForCausalLM.from_pretrained(model_id, device_map="auto", load_in_8bit=True)
|
25 |
+
|
26 |
+
# Llama tokenizer missing pad token
|
27 |
+
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
|
28 |
+
|
29 |
+
pipe = pipeline(
|
30 |
+
"text-generation",
|
31 |
+
model=model,
|
32 |
+
tokenizer=tokenizer,
|
33 |
+
max_length=4096, # Llama-2 default context window
|
34 |
+
temperature=0.7,
|
35 |
+
top_p=0.95,
|
36 |
+
repetition_penalty=1.15
|
37 |
+
)
|
38 |
+
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
chatbot = gr.Chatbot()
|
41 |
+
msg = gr.Textbox()
|
42 |
+
clear = gr.Button("Clear")
|
43 |
+
|
44 |
+
def hist_to_prompt(history):
|
45 |
+
prompt = ""
|
46 |
+
for human_text, bot_text in history:
|
47 |
+
prompt += f"### HUMAN:\n{human_text}\n\n### RESPONSE:\n"
|
48 |
+
if bot_text:
|
49 |
+
prompt += f"{bot_text}\n\n"
|
50 |
+
return prompt
|
51 |
+
|
52 |
+
def get_bot_response(text):
|
53 |
+
bot_text_index = text.rfind('### RESPONSE:')
|
54 |
+
if bot_text_index != -1:
|
55 |
+
text = text[bot_text_index + len('### RESPONSE:'):].strip()
|
56 |
+
return text
|
57 |
+
|
58 |
+
def user(user_message, history):
|
59 |
+
return "", history + [[user_message, None]]
|
60 |
+
|
61 |
+
def bot(history):
|
62 |
+
#bot_message = random.choice(["How are you?", "I love you", "I'm very hungry"])
|
63 |
+
#history[-1][1] = bot_message + '</s>'
|
64 |
+
|
65 |
+
hist_text = hist_to_prompt(history)
|
66 |
+
print(hist_text)
|
67 |
+
bot_message = get_llm_response(hist_text, pipe) + tokenizer.eos_token
|
68 |
+
history[-1][1] = bot_message # add bot message to overall history
|
69 |
+
|
70 |
+
return history
|
71 |
+
|
72 |
+
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
73 |
+
bot, chatbot, chatbot
|
74 |
+
)
|
75 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
76 |
+
|
77 |
+
demo.queue()
|
78 |
+
demo.launch()
|