geored's picture
Upload folder using huggingface_hub
add8f0b verified
raw
history blame
6.83 kB
"""Pydantic data models and other dataclasses. This is the only file that uses Optional[]
typing syntax instead of | None syntax to work with pydantic"""
from __future__ import annotations
import pathlib
import secrets
import shutil
from abc import ABC, abstractmethod
from enum import Enum, auto
from typing import TYPE_CHECKING, Any, List, Optional, Union
from fastapi import Request
from gradio_client.utils import traverse
from . import wasm_utils
if not wasm_utils.IS_WASM or TYPE_CHECKING:
from pydantic import BaseModel, RootModel, ValidationError
else:
# XXX: Currently Pyodide V2 is not available on Pyodide,
# so we install V1 for the Wasm version.
from typing import Generic, TypeVar
from pydantic import BaseModel as BaseModelV1
from pydantic import ValidationError, schema_of
# Map V2 method calls to V1 implementations.
# Ref: https://docs.pydantic.dev/latest/migration/#changes-to-pydanticbasemodel
class BaseModelMeta(type(BaseModelV1)):
def __new__(cls, name, bases, dct):
# Override `dct` to dynamically create a `Config` class based on `model_config`.
if "model_config" in dct:
config_class = type("Config", (), {})
for key, value in dct["model_config"].items():
setattr(config_class, key, value)
dct["Config"] = config_class
del dct["model_config"]
model_class = super().__new__(cls, name, bases, dct)
return model_class
class BaseModel(BaseModelV1, metaclass=BaseModelMeta):
pass
BaseModel.model_dump = BaseModel.dict # type: ignore
BaseModel.model_json_schema = BaseModel.schema # type: ignore
# RootModel is not available in V1, so we create a dummy class.
PydanticUndefined = object()
RootModelRootType = TypeVar("RootModelRootType")
class RootModel(BaseModel, Generic[RootModelRootType]):
root: RootModelRootType
def __init__(self, root: RootModelRootType = PydanticUndefined, **data):
if data:
if root is not PydanticUndefined:
raise ValueError(
'"RootModel.__init__" accepts either a single positional argument or arbitrary keyword arguments'
)
root = data # type: ignore
# XXX: No runtime validation is executed.
super().__init__(root=root) # type: ignore
def dict(self, **kwargs):
return super().dict(**kwargs)["root"]
@classmethod
def schema(cls, **_kwargs):
# XXX: kwargs are ignored.
return schema_of(cls.__fields__["root"].type_) # type: ignore
RootModel.model_dump = RootModel.dict # type: ignore
RootModel.model_json_schema = RootModel.schema # type: ignore
class SimplePredictBody(BaseModel):
data: List[Any]
session_hash: Optional[str] = None
class PredictBody(BaseModel):
model_config = {"arbitrary_types_allowed": True}
session_hash: Optional[str] = None
event_id: Optional[str] = None
data: List[Any]
event_data: Optional[Any] = None
fn_index: Optional[int] = None
trigger_id: Optional[int] = None
simple_format: bool = False
batched: Optional[
bool
] = False # Whether the data is a batch of samples (i.e. called from the queue if batch=True) or a single sample (i.e. called from the UI)
request: Optional[
Request
] = None # dictionary of request headers, query parameters, url, etc. (used to to pass in request for queuing)
class ResetBody(BaseModel):
event_id: str
class ComponentServerBody(BaseModel):
session_hash: str
component_id: int
fn_name: str
data: Any
class InterfaceTypes(Enum):
STANDARD = auto()
INPUT_ONLY = auto()
OUTPUT_ONLY = auto()
UNIFIED = auto()
class GradioBaseModel(ABC):
def copy_to_dir(self, dir: str | pathlib.Path) -> GradioDataModel:
if not isinstance(self, (BaseModel, RootModel)):
raise TypeError("must be used in a Pydantic model")
dir = pathlib.Path(dir)
# TODO: Making sure path is unique should be done in caller
def unique_copy(obj: dict):
data = FileData(**obj)
return data._copy_to_dir(
str(pathlib.Path(dir / secrets.token_hex(10)))
).model_dump()
return self.__class__.from_json(
x=traverse(
self.model_dump(),
unique_copy,
FileData.is_file_data,
)
)
@classmethod
@abstractmethod
def from_json(cls, x) -> GradioDataModel:
pass
class GradioModel(GradioBaseModel, BaseModel):
@classmethod
def from_json(cls, x) -> GradioModel:
return cls(**x)
class GradioRootModel(GradioBaseModel, RootModel):
@classmethod
def from_json(cls, x) -> GradioRootModel:
return cls(root=x)
GradioDataModel = Union[GradioModel, GradioRootModel]
class FileData(GradioModel):
path: str # server filepath
url: Optional[str] = None # normalised server url
size: Optional[int] = None # size in bytes
orig_name: Optional[str] = None # original filename
mime_type: Optional[str] = None
is_stream: bool = False
meta: dict = {"_type": "gradio.FileData"}
@property
def is_none(self):
return all(
f is None
for f in [
self.path,
self.url,
self.size,
self.orig_name,
self.mime_type,
]
)
@classmethod
def from_path(cls, path: str) -> FileData:
return cls(path=path)
def _copy_to_dir(self, dir: str) -> FileData:
pathlib.Path(dir).mkdir(exist_ok=True)
new_obj = dict(self)
if not self.path:
raise ValueError("Source file path is not set")
new_name = shutil.copy(self.path, dir)
new_obj["path"] = new_name
return self.__class__(**new_obj)
@classmethod
def is_file_data(cls, obj: Any):
if isinstance(obj, dict):
try:
return not FileData(**obj).is_none
except (TypeError, ValidationError):
return False
return False
class ListFiles(GradioRootModel):
root: List[FileData]
def __getitem__(self, index):
return self.root[index]
def __iter__(self):
return iter(self.root)
class _StaticFiles:
"""
Class to hold all static files for an app
"""
all_paths = []
def __init__(self, paths: list[str | pathlib.Path]) -> None:
self.paths = paths
self.all_paths = [pathlib.Path(p).resolve() for p in paths]
@classmethod
def clear(cls):
cls.all_paths = []