Spaces:
Build error
Build error
| """ | |
| Code adapted from: https://github.com/akanazawa/hmr/blob/master/src/benchmark/eval_util.py | |
| """ | |
| import torch | |
| import numpy as np | |
| from typing import Optional, Dict, List, Tuple | |
| def compute_similarity_transform(S1: torch.Tensor, S2: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Computes a similarity transform (sR, t) in a batched way that takes | |
| a set of 3D points S1 (B, N, 3) closest to a set of 3D points S2 (B, N, 3), | |
| where R is a 3x3 rotation matrix, t 3x1 translation, s scale. | |
| i.e. solves the orthogonal Procrutes problem. | |
| Args: | |
| S1 (torch.Tensor): First set of points of shape (B, N, 3). | |
| S2 (torch.Tensor): Second set of points of shape (B, N, 3). | |
| Returns: | |
| (torch.Tensor): The first set of points after applying the similarity transformation. | |
| """ | |
| batch_size = S1.shape[0] | |
| S1 = S1.permute(0, 2, 1) | |
| S2 = S2.permute(0, 2, 1) | |
| # 1. Remove mean. | |
| mu1 = S1.mean(dim=2, keepdim=True) | |
| mu2 = S2.mean(dim=2, keepdim=True) | |
| X1 = S1 - mu1 | |
| X2 = S2 - mu2 | |
| # 2. Compute variance of X1 used for scale. | |
| var1 = (X1**2).sum(dim=(1,2)) | |
| # 3. The outer product of X1 and X2. | |
| K = torch.matmul(X1, X2.permute(0, 2, 1)) | |
| # 4. Solution that Maximizes trace(R'K) is R=U*V', where U, V are singular vectors of K. | |
| U, s, V = torch.svd(K) | |
| Vh = V.permute(0, 2, 1) | |
| # Construct Z that fixes the orientation of R to get det(R)=1. | |
| Z = torch.eye(U.shape[1], device=U.device).unsqueeze(0).repeat(batch_size, 1, 1) | |
| Z[:, -1, -1] *= torch.sign(torch.linalg.det(torch.matmul(U, Vh))) | |
| # Construct R. | |
| R = torch.matmul(torch.matmul(V, Z), U.permute(0, 2, 1)) | |
| # 5. Recover scale. | |
| trace = torch.matmul(R, K).diagonal(offset=0, dim1=-1, dim2=-2).sum(dim=-1) | |
| scale = (trace / var1).unsqueeze(dim=-1).unsqueeze(dim=-1) | |
| # 6. Recover translation. | |
| t = mu2 - scale*torch.matmul(R, mu1) | |
| # 7. Error: | |
| S1_hat = scale*torch.matmul(R, S1) + t | |
| return S1_hat.permute(0, 2, 1) | |
| def reconstruction_error(S1, S2) -> np.array: | |
| """ | |
| Computes the mean Euclidean distance of 2 set of points S1, S2 after performing Procrustes alignment. | |
| Args: | |
| S1 (torch.Tensor): First set of points of shape (B, N, 3). | |
| S2 (torch.Tensor): Second set of points of shape (B, N, 3). | |
| Returns: | |
| (np.array): Reconstruction error. | |
| """ | |
| S1_hat = compute_similarity_transform(S1, S2) | |
| re = torch.sqrt( ((S1_hat - S2)** 2).sum(dim=-1)).mean(dim=-1) | |
| return re | |
| def eval_pose(pred_joints, gt_joints) -> Tuple[np.array, np.array]: | |
| """ | |
| Compute joint errors in mm before and after Procrustes alignment. | |
| Args: | |
| pred_joints (torch.Tensor): Predicted 3D joints of shape (B, N, 3). | |
| gt_joints (torch.Tensor): Ground truth 3D joints of shape (B, N, 3). | |
| Returns: | |
| Tuple[np.array, np.array]: Joint errors in mm before and after alignment. | |
| """ | |
| # Absolute error (MPJPE) | |
| mpjpe = torch.sqrt(((pred_joints - gt_joints) ** 2).sum(dim=-1)).mean(dim=-1).cpu().numpy() | |
| # Reconstruction_error | |
| r_error = reconstruction_error(pred_joints, gt_joints).cpu().numpy() | |
| return 1000 * mpjpe, 1000 * r_error | |
| class Evaluator: | |
| def __init__(self, | |
| dataset_length: int, | |
| keypoint_list: List, | |
| pelvis_ind: int, | |
| metrics: List = ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re'], | |
| pck_thresholds: Optional[List] = None): | |
| """ | |
| Class used for evaluating trained models on different 3D pose datasets. | |
| Args: | |
| dataset_length (int): Total dataset length. | |
| keypoint_list [List]: List of keypoints used for evaluation. | |
| pelvis_ind (int): Index of pelvis keypoint; used for aligning the predictions and ground truth. | |
| metrics [List]: List of evaluation metrics to record. | |
| """ | |
| self.dataset_length = dataset_length | |
| self.keypoint_list = keypoint_list | |
| self.pelvis_ind = pelvis_ind | |
| self.metrics = metrics | |
| for metric in self.metrics: | |
| setattr(self, metric, np.zeros((dataset_length,))) | |
| self.counter = 0 | |
| if pck_thresholds is None: | |
| self.pck_evaluator = None | |
| else: | |
| self.pck_evaluator = EvaluatorPCK(pck_thresholds) | |
| def log(self): | |
| """ | |
| Print current evaluation metrics | |
| """ | |
| if self.counter == 0: | |
| print('Evaluation has not started') | |
| return | |
| print(f'{self.counter} / {self.dataset_length} samples') | |
| if self.pck_evaluator is not None: | |
| self.pck_evaluator.log() | |
| for metric in self.metrics: | |
| if metric in ['mode_mpjpe', 'mode_re', 'min_mpjpe', 'min_re']: | |
| unit = 'mm' | |
| else: | |
| unit = '' | |
| print(f'{metric}: {getattr(self, metric)[:self.counter].mean()} {unit}') | |
| print('***') | |
| def get_metrics_dict(self) -> Dict: | |
| """ | |
| Returns: | |
| Dict: Dictionary of evaluation metrics. | |
| """ | |
| d1 = {metric: getattr(self, metric)[:self.counter].mean() for metric in self.metrics} | |
| if self.pck_evaluator is not None: | |
| d2 = self.pck_evaluator.get_metrics_dict() | |
| d1.update(d2) | |
| return d1 | |
| def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None): | |
| """ | |
| Evaluate current batch. | |
| Args: | |
| output (Dict): Regression output. | |
| batch (Dict): Dictionary containing images and their corresponding annotations. | |
| opt_output (Dict): Optimization output. | |
| """ | |
| if self.pck_evaluator is not None: | |
| self.pck_evaluator(output, batch, opt_output) | |
| pred_keypoints_3d = output['pred_keypoints_3d'].detach() | |
| pred_keypoints_3d = pred_keypoints_3d[:,None,:,:] | |
| batch_size = pred_keypoints_3d.shape[0] | |
| num_samples = pred_keypoints_3d.shape[1] | |
| gt_keypoints_3d = batch['keypoints_3d'][:, :, :-1].unsqueeze(1).repeat(1, num_samples, 1, 1) | |
| # Align predictions and ground truth such that the pelvis location is at the origin | |
| pred_keypoints_3d -= pred_keypoints_3d[:, :, [self.pelvis_ind]] | |
| gt_keypoints_3d -= gt_keypoints_3d[:, :, [self.pelvis_ind]] | |
| # Compute joint errors | |
| mpjpe, re = eval_pose(pred_keypoints_3d.reshape(batch_size * num_samples, -1, 3)[:, self.keypoint_list], gt_keypoints_3d.reshape(batch_size * num_samples, -1 ,3)[:, self.keypoint_list]) | |
| mpjpe = mpjpe.reshape(batch_size, num_samples) | |
| re = re.reshape(batch_size, num_samples) | |
| # Compute 2d keypoint errors | |
| pred_keypoints_2d = output['pred_keypoints_2d'].detach() | |
| pred_keypoints_2d = pred_keypoints_2d[:,None,:,:] | |
| gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1) | |
| conf = gt_keypoints_2d[:, :, :, -1].clone() | |
| kp_err = torch.nn.functional.mse_loss( | |
| pred_keypoints_2d, | |
| gt_keypoints_2d[:, :, :, :-1], | |
| reduction='none' | |
| ).sum(dim=3) | |
| kp_l2_loss = (conf * kp_err).mean(dim=2) | |
| kp_l2_loss = kp_l2_loss.detach().cpu().numpy() | |
| # Compute joint errors after optimization, if available. | |
| if opt_output is not None: | |
| opt_keypoints_3d = opt_output['model_joints'] | |
| opt_keypoints_3d -= opt_keypoints_3d[:, [self.pelvis_ind]] | |
| opt_mpjpe, opt_re = eval_pose(opt_keypoints_3d[:, self.keypoint_list], gt_keypoints_3d[:, 0, self.keypoint_list]) | |
| # The 0-th sample always corresponds to the mode | |
| if hasattr(self, 'mode_mpjpe'): | |
| mode_mpjpe = mpjpe[:, 0] | |
| self.mode_mpjpe[self.counter:self.counter+batch_size] = mode_mpjpe | |
| if hasattr(self, 'mode_re'): | |
| mode_re = re[:, 0] | |
| self.mode_re[self.counter:self.counter+batch_size] = mode_re | |
| if hasattr(self, 'mode_kpl2'): | |
| mode_kpl2 = kp_l2_loss[:, 0] | |
| self.mode_kpl2[self.counter:self.counter+batch_size] = mode_kpl2 | |
| if hasattr(self, 'min_mpjpe'): | |
| min_mpjpe = mpjpe.min(axis=-1) | |
| self.min_mpjpe[self.counter:self.counter+batch_size] = min_mpjpe | |
| if hasattr(self, 'min_re'): | |
| min_re = re.min(axis=-1) | |
| self.min_re[self.counter:self.counter+batch_size] = min_re | |
| if hasattr(self, 'min_kpl2'): | |
| min_kpl2 = kp_l2_loss.min(axis=-1) | |
| self.min_kpl2[self.counter:self.counter+batch_size] = min_kpl2 | |
| if hasattr(self, 'opt_mpjpe'): | |
| self.opt_mpjpe[self.counter:self.counter+batch_size] = opt_mpjpe | |
| if hasattr(self, 'opt_re'): | |
| self.opt_re[self.counter:self.counter+batch_size] = opt_re | |
| self.counter += batch_size | |
| if hasattr(self, 'mode_mpjpe') and hasattr(self, 'mode_re'): | |
| return { | |
| 'mode_mpjpe': mode_mpjpe, | |
| 'mode_re': mode_re, | |
| } | |
| else: | |
| return {} | |
| class EvaluatorPCK: | |
| def __init__(self, thresholds: List = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5],): | |
| """ | |
| Class used for evaluating trained models on different 3D pose datasets. | |
| Args: | |
| thresholds [List]: List of PCK thresholds to evaluate. | |
| metrics [List]: List of evaluation metrics to record. | |
| """ | |
| self.thresholds = thresholds | |
| self.pred_kp_2d = [] | |
| self.gt_kp_2d = [] | |
| self.gt_conf_2d = [] | |
| self.counter = 0 | |
| def log(self): | |
| """ | |
| Print current evaluation metrics | |
| """ | |
| if self.counter == 0: | |
| print('Evaluation has not started') | |
| return | |
| print(f'{self.counter} samples') | |
| metrics_dict = self.get_metrics_dict() | |
| for metric in metrics_dict: | |
| print(f'{metric}: {metrics_dict[metric]}') | |
| print('***') | |
| def get_metrics_dict(self) -> Dict: | |
| """ | |
| Returns: | |
| Dict: Dictionary of evaluation metrics. | |
| """ | |
| pcks = self.compute_pcks() | |
| metrics = {} | |
| for thr, (acc,avg_acc,cnt) in zip(self.thresholds, pcks): | |
| metrics.update({f'kp{i}_pck_{thr}': float(a) for i, a in enumerate(acc) if a>=0}) | |
| metrics.update({f'kpAvg_pck_{thr}': float(avg_acc)}) | |
| return metrics | |
| def compute_pcks(self): | |
| pred_kp_2d = np.concatenate(self.pred_kp_2d, axis=0) | |
| gt_kp_2d = np.concatenate(self.gt_kp_2d, axis=0) | |
| gt_conf_2d = np.concatenate(self.gt_conf_2d, axis=0) | |
| assert pred_kp_2d.shape == gt_kp_2d.shape | |
| assert pred_kp_2d[..., 0].shape == gt_conf_2d.shape | |
| assert pred_kp_2d.shape[1] == 1 # num_samples | |
| from mmpose.core.evaluation import keypoint_pck_accuracy | |
| pcks = [ | |
| keypoint_pck_accuracy( | |
| pred_kp_2d[:, 0, :, :], | |
| gt_kp_2d[:, 0, :, :], | |
| gt_conf_2d[:, 0, :]>0.5, | |
| thr=thr, | |
| normalize = np.ones((len(pred_kp_2d),2)) # Already in [-0.5,0.5] range. No need to normalize | |
| ) | |
| for thr in self.thresholds | |
| ] | |
| return pcks | |
| def __call__(self, output: Dict, batch: Dict, opt_output: Optional[Dict] = None): | |
| """ | |
| Evaluate current batch. | |
| Args: | |
| output (Dict): Regression output. | |
| batch (Dict): Dictionary containing images and their corresponding annotations. | |
| opt_output (Dict): Optimization output. | |
| """ | |
| pred_keypoints_2d = output['pred_keypoints_2d'].detach() | |
| num_samples = 1 | |
| batch_size = pred_keypoints_2d.shape[0] | |
| pred_keypoints_2d = pred_keypoints_2d[:,None,:,:] | |
| gt_keypoints_2d = batch['keypoints_2d'][:,None,:,:].repeat(1, num_samples, 1, 1) | |
| self.pred_kp_2d.append(pred_keypoints_2d[:, :, :, :2].detach().cpu().numpy()) | |
| self.gt_conf_2d.append(gt_keypoints_2d[:, :, :, -1].detach().cpu().numpy()) | |
| self.gt_kp_2d.append(gt_keypoints_2d[:, :, :, :2].detach().cpu().numpy()) | |
| self.counter += batch_size | |