geopavlakos's picture
Initial commit
d7a991a
raw
history blame
2.88 kB
# Copyright (c) Open-MMLab. All rights reserved.
import os.path as osp
import time
from tempfile import TemporaryDirectory
import torch
from torch.optim import Optimizer
import mmcv
from mmcv.parallel import is_module_wrapper
from mmcv.runner.checkpoint import weights_to_cpu, get_state_dict
try:
import apex
except:
print('apex is not installed')
def save_checkpoint(model, filename, optimizer=None, meta=None):
"""Save checkpoint to file.
The checkpoint will have 4 fields: ``meta``, ``state_dict`` and
``optimizer``, ``amp``. By default ``meta`` will contain version
and time info.
Args:
model (Module): Module whose params are to be saved.
filename (str): Checkpoint filename.
optimizer (:obj:`Optimizer`, optional): Optimizer to be saved.
meta (dict, optional): Metadata to be saved in checkpoint.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(f'meta must be a dict or None, but got {type(meta)}')
meta.update(mmcv_version=mmcv.__version__, time=time.asctime())
if is_module_wrapper(model):
model = model.module
if hasattr(model, 'CLASSES') and model.CLASSES is not None:
# save class name to the meta
meta.update(CLASSES=model.CLASSES)
checkpoint = {
'meta': meta,
'state_dict': weights_to_cpu(get_state_dict(model))
}
# save optimizer state dict in the checkpoint
if isinstance(optimizer, Optimizer):
checkpoint['optimizer'] = optimizer.state_dict()
elif isinstance(optimizer, dict):
checkpoint['optimizer'] = {}
for name, optim in optimizer.items():
checkpoint['optimizer'][name] = optim.state_dict()
# save amp state dict in the checkpoint
checkpoint['amp'] = apex.amp.state_dict()
if filename.startswith('pavi://'):
try:
from pavi import modelcloud
from pavi.exception import NodeNotFoundError
except ImportError:
raise ImportError(
'Please install pavi to load checkpoint from modelcloud.')
model_path = filename[7:]
root = modelcloud.Folder()
model_dir, model_name = osp.split(model_path)
try:
model = modelcloud.get(model_dir)
except NodeNotFoundError:
model = root.create_training_model(model_dir)
with TemporaryDirectory() as tmp_dir:
checkpoint_file = osp.join(tmp_dir, model_name)
with open(checkpoint_file, 'wb') as f:
torch.save(checkpoint, f)
f.flush()
model.create_file(checkpoint_file, name=model_name)
else:
mmcv.mkdir_or_exist(osp.dirname(filename))
# immediately flush buffer
with open(filename, 'wb') as f:
torch.save(checkpoint, f)
f.flush()