Spaces:
Build error
Build error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import os | |
import os.path as osp | |
import warnings | |
import mmcv | |
import torch | |
from mmcv import Config, DictAction | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel | |
from mmcv.runner import get_dist_info, init_dist, load_checkpoint | |
from mmpose.apis import multi_gpu_test, single_gpu_test | |
from mmpose.datasets import build_dataloader, build_dataset | |
from mmpose.models import build_posenet | |
from mmpose.utils import setup_multi_processes | |
try: | |
from mmcv.runner import wrap_fp16_model | |
except ImportError: | |
warnings.warn('auto_fp16 from mmpose will be deprecated from v0.15.0' | |
'Please install mmcv>=1.1.4') | |
from mmpose.core import wrap_fp16_model | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='mmpose test model') | |
parser.add_argument('config', help='test config file path') | |
parser.add_argument('checkpoint', help='checkpoint file') | |
parser.add_argument('--out', help='output result file') | |
parser.add_argument( | |
'--work-dir', help='the dir to save evaluation results') | |
parser.add_argument( | |
'--fuse-conv-bn', | |
action='store_true', | |
help='Whether to fuse conv and bn, this will slightly increase' | |
'the inference speed') | |
parser.add_argument( | |
'--gpu-id', | |
type=int, | |
default=0, | |
help='id of gpu to use ' | |
'(only applicable to non-distributed testing)') | |
parser.add_argument( | |
'--eval', | |
default=None, | |
nargs='+', | |
help='evaluation metric, which depends on the dataset,' | |
' e.g., "mAP" for MSCOCO') | |
parser.add_argument( | |
'--gpu_collect', | |
action='store_true', | |
help='whether to use gpu to collect results') | |
parser.add_argument('--tmpdir', help='tmp dir for writing some results') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
default={}, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. For example, ' | |
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") | |
parser.add_argument( | |
'--launcher', | |
choices=['none', 'pytorch', 'slurm', 'mpi'], | |
default='none', | |
help='job launcher') | |
parser.add_argument('--local_rank', type=int, default=0) | |
args = parser.parse_args() | |
if 'LOCAL_RANK' not in os.environ: | |
os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def merge_configs(cfg1, cfg2): | |
# Merge cfg2 into cfg1 | |
# Overwrite cfg1 if repeated, ignore if value is None. | |
cfg1 = {} if cfg1 is None else cfg1.copy() | |
cfg2 = {} if cfg2 is None else cfg2 | |
for k, v in cfg2.items(): | |
if v: | |
cfg1[k] = v | |
return cfg1 | |
def main(): | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# set multi-process settings | |
setup_multi_processes(cfg) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
cfg.model.pretrained = None | |
cfg.data.test.test_mode = True | |
# work_dir is determined in this priority: CLI > segment in file > filename | |
if args.work_dir is not None: | |
# update configs according to CLI args if args.work_dir is not None | |
cfg.work_dir = args.work_dir | |
elif cfg.get('work_dir', None) is None: | |
# use config filename as default work_dir if cfg.work_dir is None | |
cfg.work_dir = osp.join('./work_dirs', | |
osp.splitext(osp.basename(args.config))[0]) | |
mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
distributed = False | |
else: | |
distributed = True | |
init_dist(args.launcher, **cfg.dist_params) | |
# build the dataloader | |
dataset = build_dataset(cfg.data.test, dict(test_mode=True)) | |
# step 1: give default values and override (if exist) from cfg.data | |
loader_cfg = { | |
**dict(seed=cfg.get('seed'), drop_last=False, dist=distributed), | |
**({} if torch.__version__ != 'parrots' else dict( | |
prefetch_num=2, | |
pin_memory=False, | |
)), | |
**dict((k, cfg.data[k]) for k in [ | |
'seed', | |
'prefetch_num', | |
'pin_memory', | |
'persistent_workers', | |
] if k in cfg.data) | |
} | |
# step2: cfg.data.test_dataloader has higher priority | |
test_loader_cfg = { | |
**loader_cfg, | |
**dict(shuffle=False, drop_last=False), | |
**dict(workers_per_gpu=cfg.data.get('workers_per_gpu', 1)), | |
**dict(samples_per_gpu=cfg.data.get('samples_per_gpu', 1)), | |
**cfg.data.get('test_dataloader', {}) | |
} | |
data_loader = build_dataloader(dataset, **test_loader_cfg) | |
# build the model and load checkpoint | |
model = build_posenet(cfg.model) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
load_checkpoint(model, args.checkpoint, map_location='cpu') | |
if args.fuse_conv_bn: | |
model = fuse_conv_bn(model) | |
if not distributed: | |
model = MMDataParallel(model, device_ids=[args.gpu_id]) | |
outputs = single_gpu_test(model, data_loader) | |
else: | |
model = MMDistributedDataParallel( | |
model.cuda(), | |
device_ids=[torch.cuda.current_device()], | |
broadcast_buffers=False) | |
outputs = multi_gpu_test(model, data_loader, args.tmpdir, | |
args.gpu_collect) | |
rank, _ = get_dist_info() | |
eval_config = cfg.get('evaluation', {}) | |
eval_config = merge_configs(eval_config, dict(metric=args.eval)) | |
if rank == 0: | |
if args.out: | |
print(f'\nwriting results to {args.out}') | |
mmcv.dump(outputs, args.out) | |
results = dataset.evaluate(outputs, cfg.work_dir, **eval_config) | |
for k, v in sorted(results.items()): | |
print(f'{k}: {v}') | |
if __name__ == '__main__': | |
main() | |