Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import multiprocessing | |
import json | |
import time | |
from joblib import Parallel, delayed | |
from transformers import AutoTokenizer | |
from ltr_msmarco.convert_common import get_retokenized | |
'''Replace original contents fields with bert tokenization''' | |
parser = argparse.ArgumentParser(description='Convert MSMARCO-adhoc documents.') | |
parser.add_argument('--input', metavar='input file', help='input file', | |
type=str, required=True) | |
parser.add_argument('--output', metavar='output file', help='output file', | |
type=str, required=True) | |
parser.add_argument('--workers', metavar='# of processes', help='# of workers to spawn', | |
type=int, default=multiprocessing.cpu_count() - 2) | |
args = parser.parse_args() | |
print(args) | |
arg_vars = vars(args) | |
def batch_file(iterable, n=10000): | |
batch = [] | |
for line in iterable: | |
batch.append(line) | |
if len(batch) == n: | |
yield batch | |
batch = [] | |
if len(batch) > 0: | |
yield batch | |
batch = [] | |
return | |
def batch_process(batch): | |
bert_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def process(line): | |
if not line: | |
return None | |
json_line = json.loads(line) | |
pid = json_line['id'] | |
body = json_line['contents'] | |
doc = {"id": pid, | |
"contents": get_retokenized(bert_tokenizer, body.lower())} | |
return doc | |
res = [] | |
start = time.time() | |
for line in batch: | |
res.append(process(line)) | |
if len(res) % 1000 == 0: | |
end = time.time() | |
print(f"finish {len(res)} using {end-start}") | |
start = end | |
return res | |
if __name__ == '__main__': | |
workers = args.workers | |
print(f"Spawning {workers} processes") | |
pool = Parallel(n_jobs=workers, verbose=10) | |
line_num = 0 | |
with open(args.input) as inFile: | |
with open(args.output, 'w') as outFile: | |
for batch_json in pool([delayed(batch_process)(batch) for batch in batch_file(inFile)]): | |
for doc_json in batch_json: | |
line_num = line_num + 1 | |
if doc_json is not None: | |
outFile.write(json.dumps(doc_json) + '\n') | |
else: | |
print(f"Ignoring misformatted line {line_num}") | |
if line_num % 100 == 0: | |
print(f"Processed {line_num} passages") | |
print(f"Processed {line_num} passages") | |