NetsPresso_QA / scripts /ltr_msmarco /convert_common.py
geonmin-kim's picture
Upload folder using huggingface_hub
d6585f5
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import re
import spacy
"""
This file provides helpers to convert passage and queries
"""
def read_stopwords(fileName='stopwords.txt', lower_case=True):
"""Reads a list of stopwords from a file. By default the words
are read from a standard repo location and are lower_cased.
:param fileName a stopword file name
:param lower_case a boolean flag indicating if lowercasing is needed.
:return a list of stopwords
"""
stopwords = set()
with open(fileName) as f:
for w in f:
w = w.strip()
if w:
if lower_case:
w = w.lower()
stopwords.add(w)
return stopwords
def is_alpha_num(s):
return s and (re.match("^[a-zA-Z-_.0-9]+$", s) is not None)
class SpacyTextParser:
def __init__(self, model_name, stopwords,
remove_punct=True,
sent_split=False,
keep_only_alpha_num=False,
lower_case=True,
enable_POS=True):
"""Constructor.
:param model_name a name of the spacy model to use, e.g., en_core_web_sm
:param stopwords a list of stop words to be excluded (case insensitive);
a token is also excluded when its lemma is in the stop word list.
:param remove_punct a bool flag indicating if the punctuation tokens need to be removed
:param sent_split a bool flag indicating if sentence splitting is necessary
:param keep_only_alpha_num a bool flag indicating if we need to keep only alpha-numeric characters
:param enable_POS a bool flag that enables POS tagging (which, e.g., can improve lemmatization)
"""
disable_list = ['ner', 'parser']
if not enable_POS:
disable_list.append('tagger')
print('Disabled Spacy components: ', disable_list)
self._nlp = spacy.load(model_name, disable=disable_list)
if sent_split:
sentencizer = self._nlp.create_pipe("sentencizer")
self._nlp.add_pipe(sentencizer)
self._remove_punct = remove_punct
self._stopwords = frozenset([w.lower() for w in stopwords])
self._keep_only_alpha_num = keep_only_alpha_num
self._lower_case = lower_case
@staticmethod
def _basic_clean(text):
return text.replace("’", "'")
def __call__(self, text):
"""A thin wrapper that merely calls spacy.
:param text input text string
:return a spacy Doc object
"""
return self._nlp(SpacyTextParser._basic_clean(text))
def proc_text(self, text):
"""Process text, remove stopwords and obtain lemmas, but does not split into sentences.
This function should not emit newlines!
:param text input text string
:return a tuple (lemmatized text, original-form text). Text is white-space separated.
"""
lemmas = []
tokens = []
doc = self(text)
for tokObj in doc:
if self._remove_punct and tokObj.is_punct:
continue
lemma = tokObj.lemma_
text = tokObj.text
if self._keep_only_alpha_num and not is_alpha_num(text):
continue
tok1 = text.lower()
tok2 = lemma.lower()
if tok1 in self._stopwords or tok2 in self._stopwords:
continue
if self._lower_case:
text = text.lower()
lemma = lemma.lower()
lemmas.append(lemma)
tokens.append(text)
return ' '.join(lemmas), ' '.join(tokens)
def get_retokenized(tokenizer, text):
"""Obtain a space separated re-tokenized text.
:param tokenizer: a tokenizer that has the function
tokenize that returns an array of tokens.
:param text: a text to re-tokenize.
"""
return ' '.join(tokenizer.tokenize(text))
def add_retokenized_field(data_entry,
src_field,
dst_field,
tokenizer):
"""
Create a re-tokenized field from an existing one.
:param data_entry: a dictionary of entries (keys are field names, values are text items)
:param src_field: a source field
:param dst_field: a target field
:param tokenizer: a tokenizer to use, if None, nothing is done
"""
if tokenizer is not None:
dst = ''
if src_field in data_entry:
dst = get_retokenized(tokenizer, data_entry[src_field])
data_entry[dst_field] = dst