Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Python interface to the Anserini IR toolkit built on Lucene | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import json | |
import time | |
from tqdm import tqdm | |
from ._searcher import NmslibSearcher | |
from pyserini.output_writer import get_output_writer, OutputFormat, tie_breaker | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser(description='Search a nmslib index.') | |
parser.add_argument('--index', type=str, metavar='path to index or index name', required=True, | |
help="Path to nmslib index.") | |
parser.add_argument('--topics', type=str, required=True, help="path to topics") | |
parser.add_argument('--hits', type=int, metavar='num', required=False, default=1000, help="Number of hits.") | |
parser.add_argument('--output-format', type=str, metavar='format', default=OutputFormat.TREC.value, | |
help=f"Format of output. Available: {[x.value for x in list(OutputFormat)]}") | |
parser.add_argument('--output', type=str, metavar='path', required=True, help="Path to output file.") | |
parser.add_argument('--ef', type=int, required=False, default=256, help="hnsw ef_search") | |
parser.add_argument('--threads', type=int, metavar='num', required=False, default=1, | |
help="maximum threads to use during search") | |
parser.add_argument('--batch-size', type=int, metavar='num', required=False, default=1, | |
help="search batch of queries in parallel") | |
parser.add_argument('--is-sparse', action='store_true', required=False) | |
args = parser.parse_args() | |
searcher = NmslibSearcher(args.index, ef_search=args.ef, is_sparse=args.is_sparse) | |
topic_ids = [] | |
topic_vectors = [] | |
with open(args.topics) as topic_f: | |
for line in topic_f: | |
info = json.loads(line) | |
topic_ids.append(info['id']) | |
topic_vectors.append(info['vector']) | |
if not searcher: | |
exit() | |
# build output path | |
output_path = args.output | |
print(f'Running {args.topics} topics, saving to {output_path}...') | |
tag = 'HNSW' | |
# support trec and msmarco format only for now | |
output_writer = get_output_writer(output_path, OutputFormat(args.output_format), max_hits=args.hits, tag=tag) | |
search_time = 0 | |
with output_writer: | |
batch_topic_vectors = list() | |
batch_topic_ids = list() | |
for index, (topic_id, vec) in enumerate(tqdm(zip(topic_ids, topic_vectors))): | |
if args.batch_size <= 1 and args.threads <= 1: | |
start = time.time() | |
hits = searcher.search(vec, args.hits) | |
search_time += time.time() - start | |
results = [(topic_id, hits)] | |
else: | |
batch_topic_ids.append(str(topic_id)) | |
batch_topic_vectors.append(vec) | |
if (index + 1) % args.batch_size == 0 or \ | |
index == len(topic_ids) - 1: | |
start = time.time() | |
results = searcher.batch_search( | |
batch_topic_vectors, batch_topic_ids, args.hits, args.threads) | |
search_time += time.time() - start | |
results = [(id_, results[id_]) for id_ in batch_topic_ids] | |
batch_topic_ids.clear() | |
batch_topic_vectors.clear() | |
else: | |
continue | |
for topic, hits in results: | |
output_writer.write(topic, tie_breaker(hits)) | |
results.clear() | |
print(f'Search {len(topic_ids)} topics in {search_time} seconds') | |