Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
from typing import Optional | |
import torch | |
if torch.cuda.is_available(): | |
from torch.cuda.amp import autocast | |
from transformers import BertConfig, BertModel, BertTokenizer, PreTrainedModel | |
from pyserini.encode import DocumentEncoder, QueryEncoder | |
class UniCoilEncoder(PreTrainedModel): | |
config_class = BertConfig | |
base_model_prefix = 'coil_encoder' | |
load_tf_weights = None | |
def __init__(self, config: BertConfig): | |
super().__init__(config) | |
self.config = config | |
self.bert = BertModel(config) | |
self.tok_proj = torch.nn.Linear(config.hidden_size, 1) | |
self.init_weights() | |
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights | |
def _init_weights(self, module): | |
""" Initialize the weights """ | |
if isinstance(module, (torch.nn.Linear, torch.nn.Embedding)): | |
# Slightly different from the TF version which uses truncated_normal for initialization | |
# cf https://github.com/pytorch/pytorch/pull/5617 | |
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
elif isinstance(module, torch.nn.LayerNorm): | |
module.bias.data.zero_() | |
module.weight.data.fill_(1.0) | |
if isinstance(module, torch.nn.Linear) and module.bias is not None: | |
module.bias.data.zero_() | |
def init_weights(self): | |
self.bert.init_weights() | |
self.tok_proj.apply(self._init_weights) | |
def forward( | |
self, | |
input_ids: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
): | |
input_shape = input_ids.size() | |
device = input_ids.device | |
if attention_mask is None: | |
attention_mask = ( | |
torch.ones(input_shape, device=device) | |
if input_ids is None | |
else (input_ids != self.bert.config.pad_token_id) | |
) | |
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask) | |
sequence_output = outputs.last_hidden_state | |
tok_weights = self.tok_proj(sequence_output) | |
tok_weights = torch.relu(tok_weights) | |
return tok_weights | |
class UniCoilDocumentEncoder(DocumentEncoder): | |
def __init__(self, model_name, tokenizer_name=None, device='cuda:0'): | |
self.device = device | |
self.model = UniCoilEncoder.from_pretrained(model_name) | |
self.model.to(self.device) | |
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name or model_name) | |
def encode(self, texts, titles=None, expands=None, fp16=False, max_length=512, **kwargs): | |
if titles: | |
texts = [f'{title} {text}' for title, text in zip(titles, texts)] | |
if expands: | |
input_ids = self._tokenize_with_injects(texts, expands) | |
else: | |
input_ids = self.tokenizer(texts, max_length=max_length, padding='longest', | |
truncation=True, add_special_tokens=True, | |
return_tensors='pt').to(self.device)["input_ids"] | |
if fp16: | |
with autocast(): | |
with torch.no_grad(): | |
batch_weights = self.model(input_ids).cpu().detach().numpy() | |
else: | |
batch_weights = self.model(input_ids).cpu().detach().numpy() | |
batch_token_ids = input_ids.cpu().detach().numpy() | |
return self._output_to_weight_dicts(batch_token_ids, batch_weights) | |
def _output_to_weight_dicts(self, batch_token_ids, batch_weights): | |
to_return = [] | |
for i in range(len(batch_token_ids)): | |
weights = batch_weights[i].flatten() | |
tokens = self.tokenizer.convert_ids_to_tokens(batch_token_ids[i]) | |
tok_weights = {} | |
for j in range(len(tokens)): | |
tok = str(tokens[j]) | |
weight = float(weights[j]) | |
if tok == '[CLS]': | |
continue | |
if tok == '[PAD]': | |
break | |
if tok not in tok_weights: | |
tok_weights[tok] = weight | |
elif weight > tok_weights[tok]: | |
tok_weights[tok] = weight | |
to_return.append(tok_weights) | |
return to_return | |
def _tokenize_with_injects(self, texts, expands): | |
tokenized = [] | |
max_len = 0 | |
for text, expand in zip(texts, expands): | |
text_ids = self.tokenizer.encode(text, add_special_tokens=False, max_length=400, truncation=True) | |
expand_ids = self.tokenizer.encode(expand, add_special_tokens=False, max_length=100, truncation=True) | |
injects = set() | |
for tok_id in expand_ids: | |
if tok_id not in text_ids: | |
injects.add(tok_id) | |
all_tok_ids = [101] + text_ids + [102] + list(injects) + [102] # 101: CLS, 102: SEP | |
tokenized.append(all_tok_ids) | |
cur_len = len(all_tok_ids) | |
if cur_len > max_len: | |
max_len = cur_len | |
for i in range(len(tokenized)): | |
tokenized[i] += [0] * (max_len - len(tokenized[i])) | |
return torch.tensor(tokenized, device=self.device) | |
class UniCoilQueryEncoder(QueryEncoder): | |
def __init__(self, model_name_or_path, tokenizer_name=None, device='cpu'): | |
self.device = device | |
self.model = UniCoilEncoder.from_pretrained(model_name_or_path) | |
self.model.to(self.device) | |
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name or model_name_or_path) | |
def encode(self, text, **kwargs): | |
max_length = 128 # hardcode for now | |
input_ids = self.tokenizer([text], max_length=max_length, padding='longest', | |
truncation=True, add_special_tokens=True, | |
return_tensors='pt').to(self.device)["input_ids"] | |
batch_weights = self.model(input_ids).cpu().detach().numpy() | |
batch_token_ids = input_ids.cpu().detach().numpy() | |
return self._output_to_weight_dicts(batch_token_ids, batch_weights)[0] | |
def _output_to_weight_dicts(self, batch_token_ids, batch_weights): | |
to_return = [] | |
for i in range(len(batch_token_ids)): | |
weights = batch_weights[i].flatten() | |
tokens = self.tokenizer.convert_ids_to_tokens(batch_token_ids[i]) | |
tok_weights = {} | |
for j in range(len(tokens)): | |
tok = str(tokens[j]) | |
weight = float(weights[j]) | |
if tok == '[CLS]': | |
continue | |
if tok == '[PAD]': | |
break | |
if tok not in tok_weights: | |
tok_weights[tok] = weight | |
else: | |
tok_weights[tok] += weight | |
to_return.append(tok_weights) | |
return to_return | |