geonmin-kim's picture
Upload folder using huggingface_hub
d6585f5
raw
history blame
5.8 kB
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import argparse
import math
import os
import time
from collections import defaultdict
from string import Template
import yaml
from scripts.repro_matrix.defs_beir import beir_keys, trec_eval_metric_definitions
from scripts.repro_matrix.utils import run_eval_and_return_metric, ok_str, fail_str
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Generate regression matrix for BEIR.')
parser.add_argument('--skip-eval', action='store_true', default=False, help='Skip running trec_eval.')
args = parser.parse_args()
start = time.time()
table = defaultdict(lambda: defaultdict(lambda: defaultdict(lambda: 0.0)))
with open('pyserini/resources/beir.yaml') as f:
yaml_data = yaml.safe_load(f)
for condition in yaml_data['conditions']:
name = condition['name']
cmd_template = condition['command']
print(f'condition {name}:')
for datasets in condition['datasets']:
dataset = datasets['dataset']
print(f' - dataset: {dataset}')
runfile = f'runs/run.beir.{name}.{dataset}.txt'
cmd = Template(cmd_template).substitute(dataset=dataset, output=runfile)
if not os.path.exists(runfile):
print(f' Running: {cmd}')
os.system(cmd)
for expected in datasets['scores']:
for metric in expected:
if not args.skip_eval:
score = float(run_eval_and_return_metric(metric, f'beir-v1.0.0-{dataset}-test',
trec_eval_metric_definitions[metric], runfile))
result = ok_str if math.isclose(score, float(expected[metric])) \
else fail_str + f' expected {expected[metric]:.4f}'
print(f' {metric:7}: {score:.4f} {result}')
table[dataset][name][metric] = score
else:
table[dataset][name][metric] = expected[metric]
print('')
models = ['bm25-flat', 'bm25-multifield', 'splade-distil-cocodenser-medium', 'contriever', 'contriever-msmarco']
metrics = ['nDCG@10', 'R@100', 'R@1000']
top_level_sums = defaultdict(lambda: defaultdict(float))
cqadupstack_sums = defaultdict(lambda: defaultdict(float))
final_scores = defaultdict(lambda: defaultdict(float))
# Compute the running sums to compute the final mean scores
for key in beir_keys:
for model in models:
for metric in metrics:
if key.startswith('cqa'):
# The running sum for cqa needs to be kept separately.
cqadupstack_sums[model][metric] += table[key][model][metric]
else:
top_level_sums[model][metric] += table[key][model][metric]
# Compute the final mean
for model in models:
for metric in metrics:
# Compute mean over cqa sub-collections first
cqa_score = cqadupstack_sums[model][metric] / 12
# Roll cqa scores into final overall mean
final_score = (top_level_sums[model][metric] + cqa_score) / 18
final_scores[model][metric] = final_score
print(' ' * 30 + 'BM25-flat' + ' ' * 10 + 'BM25-mf' + ' ' * 13 + 'SPLADE' + ' ' * 11 + 'Contriever' + ' ' * 5 + 'Contriever-msmarco')
print(' ' * 26 + 'nDCG@10 R@100 ' * 5)
print(' ' * 27 + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14)
for dataset in beir_keys:
print(f'{dataset:25}' +
f'{table[dataset]["bm25-flat"]["nDCG@10"]:8.4f}{table[dataset]["bm25-flat"]["R@100"]:8.4f} ' +
f'{table[dataset]["bm25-multifield"]["nDCG@10"]:8.4f}{table[dataset]["bm25-multifield"]["R@100"]:8.4f} ' +
f'{table[dataset]["splade-distil-cocodenser-medium"]["nDCG@10"]:8.4f}{table[dataset]["splade-distil-cocodenser-medium"]["R@100"]:8.4f} ' +
f'{table[dataset]["contriever"]["nDCG@10"]:8.4f}{table[dataset]["contriever"]["R@100"]:8.4f} ' +
f'{table[dataset]["contriever-msmarco"]["nDCG@10"]:8.4f}{table[dataset]["contriever-msmarco"]["R@100"]:8.4f}')
print(' ' * 27 + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14 + ' ' + '-' * 14)
print('avg' + ' ' * 22 + f'{final_scores["bm25-flat"]["nDCG@10"]:8.4f}{final_scores["bm25-flat"]["R@100"]:8.4f} ' +
f'{final_scores["bm25-multifield"]["nDCG@10"]:8.4f}{final_scores["bm25-multifield"]["R@100"]:8.4f} ' +
f'{final_scores["splade-distil-cocodenser-medium"]["nDCG@10"]:8.4f}{final_scores["splade-distil-cocodenser-medium"]["R@100"]:8.4f} ' +
f'{final_scores["contriever"]["nDCG@10"]:8.4f}{final_scores["contriever"]["R@100"]:8.4f} ' +
f'{final_scores["contriever-msmarco"]["nDCG@10"]:8.4f}{final_scores["contriever-msmarco"]["R@100"]:8.4f}')
end = time.time()
print('\n')
print(f'Total elapsed time: {end - start:.0f}s')