Spaces:
Runtime error
Runtime error
# | |
# Pyserini: Reproducible IR research with sparse and dense representations | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# | |
import argparse | |
import csv | |
import json | |
import pandas as pd | |
from tqdm import tqdm | |
import sys | |
# We're going to explicitly use a local installation of Pyserini. | |
sys.path.insert(0, './') | |
sys.path.insert(0, '../pyserini/') | |
from pyserini.dsearch import BprQueryEncoder | |
def parse_qa_csv_file(location): | |
with open(location) as file: | |
reader = csv.reader(file, delimiter='\t') | |
for row in reader: | |
question = row[0] | |
answers = eval(row[1]) | |
yield question, answers | |
def parse_qa_json_file(location): | |
with open(location) as file: | |
for line in file: | |
qa = json.loads(line) | |
question = qa['question'] | |
answers = qa['answer'] | |
yield question, answers | |
if __name__ == '__main__': | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--encoder', type=str, help='encoder name or path', | |
default='facebook/dpr-question_encoder-multiset-base', required=False) | |
parser.add_argument('--input', type=str, help='qas file, json file by default', required=True) | |
parser.add_argument('--format', type=str, help='qas file format', default='json', required=False) | |
parser.add_argument('--output', type=str, help='path to store query embeddings', required=True) | |
args = parser.parse_args() | |
model = BprQueryEncoder(args.encoder) | |
tokenizer = model.tokenizer | |
embeddings = {'id': [], 'text': [], 'dense_embedding': [], 'sparse_embedding': []} | |
qa_parser = None | |
if args.format == 'csv': | |
qa_parser = parse_qa_csv_file | |
elif args.format == 'json': | |
qa_parser = parse_qa_json_file | |
if qa_parser is None: | |
print(f'No QA parser defined for file format: {args.format}, or format not match') | |
for qid, (question, answers) in enumerate(tqdm(list(qa_parser(args.input)))): | |
embeddings['id'].append(qid) | |
embeddings['text'].append(question) | |
ret = model.encode(question) | |
embeddings['dense_embedding'].append(ret['dense']) | |
embeddings['sparse_embedding'].append(ret['sparse']) | |
embeddings = pd.DataFrame(embeddings) | |
embeddings.to_pickle(args.output) | |