Spaces:
Runtime error
Runtime error
arogeriogel
commited on
Commit
•
1decf14
1
Parent(s):
92be4b9
adding presidio
Browse files- app.py +95 -6
- flair_recognizer.py +219 -0
- requirements.txt +6 -1
app.py
CHANGED
@@ -1,21 +1,98 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
from flair.data import Sentence
|
3 |
from flair.models import SequenceTagger
|
4 |
import re
|
5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Render Streamlit page
|
8 |
st.title("Anonymise your text!")
|
9 |
st.markdown(
|
10 |
-
"This mini-app anonymises text using
|
11 |
)
|
12 |
# Configure logger
|
13 |
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
|
14 |
|
15 |
-
@st.cache(suppress_st_warning=True)
|
16 |
def load_tagger():
|
17 |
return SequenceTagger.load("flair/ner-english-large")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def anonymise_text(text: str, metadata: str = "", white_listed_words: str = ""):
|
20 |
"""anonymise text"""
|
21 |
if st.session_state.n_requests >= 50:
|
@@ -42,7 +119,8 @@ def anonymise_text(text: str, metadata: str = "", white_listed_words: str = ""):
|
|
42 |
|
43 |
# else:
|
44 |
# load tagger
|
45 |
-
tagger = load_tagger()
|
|
|
46 |
sentence = Sentence(text)
|
47 |
# predict NER tags
|
48 |
tagger.predict(sentence)
|
@@ -56,15 +134,16 @@ def anonymise_text(text: str, metadata: str = "", white_listed_words: str = ""):
|
|
56 |
st.session_state.text_anon = text_anon
|
57 |
logging.info(
|
58 |
f"text: {text}{metadata}{white_listed_words}\n"
|
|
|
59 |
f"text anonymised: {st.session_state.text_anon}"
|
60 |
)
|
61 |
-
# def anonymise_text(text: str, metadata: str = "", white_listed_words: str = ""):
|
62 |
-
# st.session_state.text_anon = "this is anonymised"
|
63 |
|
64 |
if "text" not in st.session_state:
|
65 |
st.session_state.text = ""
|
66 |
if "text_error" not in st.session_state:
|
67 |
st.session_state.text_error = ""
|
|
|
|
|
68 |
if "text_anon" not in st.session_state:
|
69 |
st.session_state.text_anon = ""
|
70 |
if "n_requests" not in st.session_state:
|
@@ -79,6 +158,14 @@ white_listed_words = st.text_input(
|
|
79 |
label="Data to be ignored (optional)",
|
80 |
placeholder="inspirational",
|
81 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# button return true when clicked
|
83 |
anonymise_now = st.button(
|
84 |
label="Anonymise text",
|
@@ -89,7 +176,9 @@ anonymise_now = st.button(
|
|
89 |
text_spinner_placeholder = st.empty()
|
90 |
if st.session_state.text_error:
|
91 |
st.error(st.session_state.text_error)
|
92 |
-
|
|
|
|
|
93 |
if st.session_state.text_anon:
|
94 |
st.markdown("""---""")
|
95 |
st.text_area(label="Text anonymised", value=st.session_state.text_anon, height=100)
|
|
|
1 |
+
import spacy
|
2 |
import streamlit as st
|
3 |
from flair.data import Sentence
|
4 |
from flair.models import SequenceTagger
|
5 |
import re
|
6 |
import logging
|
7 |
+
from presidio_analyzer.nlp_engine import NlpEngineProvider
|
8 |
+
from presidio_anonymizer import AnonymizerEngine
|
9 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
10 |
+
from annotated_text import annotated_text
|
11 |
+
from flair_recognizer import FlairRecognizer
|
12 |
|
13 |
# Render Streamlit page
|
14 |
st.title("Anonymise your text!")
|
15 |
st.markdown(
|
16 |
+
"This mini-app anonymises text using Flair. You can find the code on [GitHub(WIP)](#)"
|
17 |
)
|
18 |
# Configure logger
|
19 |
logging.basicConfig(format="\n%(asctime)s\n%(message)s", level=logging.INFO, force=True)
|
20 |
|
21 |
+
@st.cache(suppress_st_warning=True, allow_output_mutation=True, show_spinner=False)
|
22 |
def load_tagger():
|
23 |
return SequenceTagger.load("flair/ner-english-large")
|
24 |
|
25 |
+
@st.cache(allow_output_mutation=True,show_spinner=False)
|
26 |
+
def analyzer_engine():
|
27 |
+
"""Return AnalyzerEngine."""
|
28 |
+
# registry = RecognizerRegistry()
|
29 |
+
# flair_recognizer = FlairRecognizer()
|
30 |
+
# registry.load_predefined_recognizers()
|
31 |
+
# registry.add_recognizer(flair_recognizer)
|
32 |
+
# analyzer = AnalyzerEngine(registry=registry, supported_languages=["en"])
|
33 |
+
analyzer = AnalyzerEngine()
|
34 |
+
flair_recognizer = FlairRecognizer()
|
35 |
+
analyzer.registry.add_recognizer(flair_recognizer)
|
36 |
+
|
37 |
+
return analyzer
|
38 |
+
|
39 |
+
def analyze(**kwargs):
|
40 |
+
"""Analyze input using Analyzer engine and input arguments (kwargs)."""
|
41 |
+
if "entities" not in kwargs or "All" in kwargs["entities"]:
|
42 |
+
kwargs["entities"] = None
|
43 |
+
return analyzer_engine().analyze(**kwargs)
|
44 |
+
|
45 |
+
def annotate(text, analyze_results,st_entities):
|
46 |
+
tokens = []
|
47 |
+
# sort by start index
|
48 |
+
results = sorted(analyze_results, key=lambda x: x.start)
|
49 |
+
for i, res in enumerate(results):
|
50 |
+
if i == 0:
|
51 |
+
tokens.append(text[:res.start])
|
52 |
+
|
53 |
+
# append entity text and entity type
|
54 |
+
tokens.append((text[res.start: res.end], res.entity_type))
|
55 |
+
|
56 |
+
# if another entity coming i.e. we're not at the last results element, add text up to next entity
|
57 |
+
if i != len(results) - 1:
|
58 |
+
tokens.append(text[res.end:results[i+1].start])
|
59 |
+
# if no more entities coming, add all remaining text
|
60 |
+
else:
|
61 |
+
tokens.append(text[res.end:])
|
62 |
+
return tokens
|
63 |
+
|
64 |
+
def get_supported_entities():
|
65 |
+
"""Return supported entities from the Analyzer Engine."""
|
66 |
+
return analyzer_engine().get_supported_entities()
|
67 |
+
|
68 |
+
st_entities = st.sidebar.multiselect(
|
69 |
+
label="Which entities to look for?",
|
70 |
+
options=get_supported_entities(),
|
71 |
+
default=list(get_supported_entities()),
|
72 |
+
)
|
73 |
+
|
74 |
+
def analyze_text(text: str, st_entities: str):
|
75 |
+
if not text:
|
76 |
+
st.session_state.text_error = "Please enter your text"
|
77 |
+
return
|
78 |
+
|
79 |
+
with text_spinner_placeholder:
|
80 |
+
with st.spinner("Please wait while your text is being analysed..."):
|
81 |
+
logging.info(f"This is the text being analysed: {text}")
|
82 |
+
analyze_results = analyze(
|
83 |
+
text=text,
|
84 |
+
entities=st_entities,
|
85 |
+
language="en",
|
86 |
+
return_decision_process=False,
|
87 |
+
)
|
88 |
+
st.session_state.annotated_tokens = annotate(text, analyze_results,st_entities)
|
89 |
+
|
90 |
+
# st.session_state.text_analys=annotated_text(*annotated_tokens)
|
91 |
+
logging.info(
|
92 |
+
f"text: {text}{metadata}{white_listed_words}\n"
|
93 |
+
f"tokens: {st.session_state.annotated_tokens}\n"
|
94 |
+
)
|
95 |
+
|
96 |
def anonymise_text(text: str, metadata: str = "", white_listed_words: str = ""):
|
97 |
"""anonymise text"""
|
98 |
if st.session_state.n_requests >= 50:
|
|
|
119 |
|
120 |
# else:
|
121 |
# load tagger
|
122 |
+
tagger = load_tagger()
|
123 |
+
# tagger = load_tagger()
|
124 |
sentence = Sentence(text)
|
125 |
# predict NER tags
|
126 |
tagger.predict(sentence)
|
|
|
134 |
st.session_state.text_anon = text_anon
|
135 |
logging.info(
|
136 |
f"text: {text}{metadata}{white_listed_words}\n"
|
137 |
+
f"entities: {sentence.get_spans('ner')}\n"
|
138 |
f"text anonymised: {st.session_state.text_anon}"
|
139 |
)
|
|
|
|
|
140 |
|
141 |
if "text" not in st.session_state:
|
142 |
st.session_state.text = ""
|
143 |
if "text_error" not in st.session_state:
|
144 |
st.session_state.text_error = ""
|
145 |
+
if "annotated_tokens" not in st.session_state:
|
146 |
+
st.session_state.annotated_tokens = ""
|
147 |
if "text_anon" not in st.session_state:
|
148 |
st.session_state.text_anon = ""
|
149 |
if "n_requests" not in st.session_state:
|
|
|
158 |
label="Data to be ignored (optional)",
|
159 |
placeholder="inspirational",
|
160 |
)
|
161 |
+
|
162 |
+
# button return true when clicked
|
163 |
+
analyze_now = st.button(
|
164 |
+
label="Analyse text",
|
165 |
+
type="primary",
|
166 |
+
on_click=analyze_text,
|
167 |
+
args=(text,st_entities,),
|
168 |
+
)
|
169 |
# button return true when clicked
|
170 |
anonymise_now = st.button(
|
171 |
label="Anonymise text",
|
|
|
176 |
text_spinner_placeholder = st.empty()
|
177 |
if st.session_state.text_error:
|
178 |
st.error(st.session_state.text_error)
|
179 |
+
if analyze_now:
|
180 |
+
# annotated_tokens
|
181 |
+
annotated_text(*st.session_state.annotated_tokens)
|
182 |
if st.session_state.text_anon:
|
183 |
st.markdown("""---""")
|
184 |
st.text_area(label="Text anonymised", value=st.session_state.text_anon, height=100)
|
flair_recognizer.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from typing import Optional, List, Tuple, Set
|
3 |
+
|
4 |
+
from presidio_analyzer import (
|
5 |
+
RecognizerResult,
|
6 |
+
EntityRecognizer,
|
7 |
+
AnalysisExplanation,
|
8 |
+
)
|
9 |
+
from presidio_analyzer.nlp_engine import NlpArtifacts
|
10 |
+
|
11 |
+
try:
|
12 |
+
from flair.data import Sentence
|
13 |
+
from flair.models import SequenceTagger
|
14 |
+
except ImportError:
|
15 |
+
print("Flair is not installed")
|
16 |
+
|
17 |
+
|
18 |
+
logger = logging.getLogger("presidio-analyzer")
|
19 |
+
|
20 |
+
|
21 |
+
class FlairRecognizer(EntityRecognizer):
|
22 |
+
"""
|
23 |
+
Wrapper for a flair model, if needed to be used within Presidio Analyzer.
|
24 |
+
|
25 |
+
:example:
|
26 |
+
>from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
27 |
+
|
28 |
+
>flair_recognizer = FlairRecognizer()
|
29 |
+
|
30 |
+
>registry = RecognizerRegistry()
|
31 |
+
>registry.add_recognizer(flair_recognizer)
|
32 |
+
|
33 |
+
>analyzer = AnalyzerEngine(registry=registry)
|
34 |
+
|
35 |
+
>results = analyzer.analyze(
|
36 |
+
> "My name is Christopher and I live in Irbid.",
|
37 |
+
> language="en",
|
38 |
+
> return_decision_process=True,
|
39 |
+
>)
|
40 |
+
>for result in results:
|
41 |
+
> print(result)
|
42 |
+
> print(result.analysis_explanation)
|
43 |
+
|
44 |
+
|
45 |
+
"""
|
46 |
+
|
47 |
+
ENTITIES = [
|
48 |
+
"LOCATION",
|
49 |
+
"PERSON",
|
50 |
+
"ORGANIZATION",
|
51 |
+
# "MISCELLANEOUS" # - There are no direct correlation with Presidio entities.
|
52 |
+
]
|
53 |
+
|
54 |
+
DEFAULT_EXPLANATION = "Identified as {} by Flair's Named Entity Recognition"
|
55 |
+
|
56 |
+
CHECK_LABEL_GROUPS = [
|
57 |
+
({"LOCATION"}, {"LOC", "LOCATION"}),
|
58 |
+
({"PERSON"}, {"PER", "PERSON"}),
|
59 |
+
({"ORGANIZATION"}, {"ORG"}),
|
60 |
+
# ({"MISCELLANEOUS"}, {"MISC"}), # Probably not PII
|
61 |
+
]
|
62 |
+
|
63 |
+
MODEL_LANGUAGES = {
|
64 |
+
"en": "flair/ner-english-large",
|
65 |
+
"es": "flair/ner-spanish-large",
|
66 |
+
"de": "flair/ner-german-large",
|
67 |
+
"nl": "flair/ner-dutch-large",
|
68 |
+
}
|
69 |
+
|
70 |
+
PRESIDIO_EQUIVALENCES = {
|
71 |
+
"PER": "PERSON",
|
72 |
+
"LOC": "LOCATION",
|
73 |
+
"ORG": "ORGANIZATION",
|
74 |
+
# 'MISC': 'MISCELLANEOUS' # - Probably not PII
|
75 |
+
}
|
76 |
+
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
supported_language: str = "en",
|
80 |
+
supported_entities: Optional[List[str]] = None,
|
81 |
+
check_label_groups: Optional[Tuple[Set, Set]] = None,
|
82 |
+
model: SequenceTagger = None,
|
83 |
+
):
|
84 |
+
self.check_label_groups = (
|
85 |
+
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS
|
86 |
+
)
|
87 |
+
|
88 |
+
supported_entities = supported_entities if supported_entities else self.ENTITIES
|
89 |
+
self.model = (
|
90 |
+
model
|
91 |
+
if model
|
92 |
+
else SequenceTagger.load(self.MODEL_LANGUAGES.get(supported_language))
|
93 |
+
)
|
94 |
+
|
95 |
+
super().__init__(
|
96 |
+
supported_entities=supported_entities,
|
97 |
+
supported_language=supported_language,
|
98 |
+
name="Flair Analytics",
|
99 |
+
)
|
100 |
+
|
101 |
+
def load(self) -> None:
|
102 |
+
"""Load the model, not used. Model is loaded during initialization."""
|
103 |
+
pass
|
104 |
+
|
105 |
+
def get_supported_entities(self) -> List[str]:
|
106 |
+
"""
|
107 |
+
Return supported entities by this model.
|
108 |
+
|
109 |
+
:return: List of the supported entities.
|
110 |
+
"""
|
111 |
+
return self.supported_entities
|
112 |
+
|
113 |
+
# Class to use Flair with Presidio as an external recognizer.
|
114 |
+
def analyze(
|
115 |
+
self, text: str, entities: List[str], nlp_artifacts: NlpArtifacts = None
|
116 |
+
) -> List[RecognizerResult]:
|
117 |
+
"""
|
118 |
+
Analyze text using Text Analytics.
|
119 |
+
|
120 |
+
:param text: The text for analysis.
|
121 |
+
:param entities: Not working properly for this recognizer.
|
122 |
+
:param nlp_artifacts: Not used by this recognizer.
|
123 |
+
:param language: Text language. Supported languages in MODEL_LANGUAGES
|
124 |
+
:return: The list of Presidio RecognizerResult constructed from the recognized
|
125 |
+
Flair detections.
|
126 |
+
"""
|
127 |
+
|
128 |
+
results = []
|
129 |
+
|
130 |
+
sentences = Sentence(text)
|
131 |
+
self.model.predict(sentences)
|
132 |
+
|
133 |
+
# If there are no specific list of entities, we will look for all of it.
|
134 |
+
if not entities:
|
135 |
+
entities = self.supported_entities
|
136 |
+
|
137 |
+
for entity in entities:
|
138 |
+
if entity not in self.supported_entities:
|
139 |
+
continue
|
140 |
+
|
141 |
+
for ent in sentences.get_spans("ner"):
|
142 |
+
if not self.__check_label(
|
143 |
+
entity, ent.labels[0].value, self.check_label_groups
|
144 |
+
):
|
145 |
+
continue
|
146 |
+
textual_explanation = self.DEFAULT_EXPLANATION.format(
|
147 |
+
ent.labels[0].value
|
148 |
+
)
|
149 |
+
explanation = self.build_flair_explanation(
|
150 |
+
round(ent.score, 2), textual_explanation
|
151 |
+
)
|
152 |
+
flair_result = self._convert_to_recognizer_result(ent, explanation)
|
153 |
+
|
154 |
+
results.append(flair_result)
|
155 |
+
|
156 |
+
return results
|
157 |
+
|
158 |
+
def _convert_to_recognizer_result(self, entity, explanation) -> RecognizerResult:
|
159 |
+
|
160 |
+
entity_type = self.PRESIDIO_EQUIVALENCES.get(entity.tag, entity.tag)
|
161 |
+
flair_score = round(entity.score, 2)
|
162 |
+
|
163 |
+
flair_results = RecognizerResult(
|
164 |
+
entity_type=entity_type,
|
165 |
+
start=entity.start_position,
|
166 |
+
end=entity.end_position,
|
167 |
+
score=flair_score,
|
168 |
+
analysis_explanation=explanation,
|
169 |
+
)
|
170 |
+
|
171 |
+
return flair_results
|
172 |
+
|
173 |
+
def build_flair_explanation(
|
174 |
+
self, original_score: float, explanation: str
|
175 |
+
) -> AnalysisExplanation:
|
176 |
+
"""
|
177 |
+
Create explanation for why this result was detected.
|
178 |
+
|
179 |
+
:param original_score: Score given by this recognizer
|
180 |
+
:param explanation: Explanation string
|
181 |
+
:return:
|
182 |
+
"""
|
183 |
+
explanation = AnalysisExplanation(
|
184 |
+
recognizer=self.__class__.__name__,
|
185 |
+
original_score=original_score,
|
186 |
+
textual_explanation=explanation,
|
187 |
+
)
|
188 |
+
return explanation
|
189 |
+
|
190 |
+
@staticmethod
|
191 |
+
def __check_label(
|
192 |
+
entity: str, label: str, check_label_groups: Tuple[Set, Set]
|
193 |
+
) -> bool:
|
194 |
+
return any(
|
195 |
+
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups]
|
196 |
+
)
|
197 |
+
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
|
201 |
+
from presidio_analyzer import AnalyzerEngine, RecognizerRegistry
|
202 |
+
|
203 |
+
flair_recognizer = (
|
204 |
+
FlairRecognizer()
|
205 |
+
) # This would download a very large (+2GB) model on the first run
|
206 |
+
|
207 |
+
registry = RecognizerRegistry()
|
208 |
+
registry.add_recognizer(flair_recognizer)
|
209 |
+
|
210 |
+
analyzer = AnalyzerEngine(registry=registry)
|
211 |
+
|
212 |
+
results = analyzer.analyze(
|
213 |
+
"My name is Christopher and I live in Irbid.",
|
214 |
+
language="en",
|
215 |
+
return_decision_process=True,
|
216 |
+
)
|
217 |
+
for result in results:
|
218 |
+
print(result)
|
219 |
+
print(result.analysis_explanation)
|
requirements.txt
CHANGED
@@ -1 +1,6 @@
|
|
1 |
-
flair==0.11
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flair==0.11
|
2 |
+
presidio-anonymizer
|
3 |
+
presidio-analyzer
|
4 |
+
st-annotated-text
|
5 |
+
spacy>=3.0.0,<4.0.0
|
6 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_lg-3.0.0/en_core_web_lg-3.0.0.tar.gz#egg=en_core_web_lg
|