Spaces:
Sleeping
Sleeping
import torch | |
from diffusers.loaders import AttnProcsLayers | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from modules.beats.BEATs import BEATs, BEATsConfig | |
from modules.AudioToken.embedder import FGAEmbedder | |
from diffusers import AutoencoderKL, UNet2DConditionModel | |
from diffusers.models.attention_processor import LoRAAttnProcessor | |
from diffusers import StableDiffusionPipeline | |
import numpy as np | |
import gradio as gr | |
class AudioTokenWrapper(torch.nn.Module): | |
"""Simple wrapper module for Stable Diffusion that holds all the models together""" | |
def __init__( | |
self, | |
lora, | |
device, | |
): | |
super().__init__() | |
# Load scheduler and models | |
self.tokenizer = CLIPTokenizer.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="tokenizer" | |
) | |
self.text_encoder = CLIPTextModel.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="text_encoder", revision=None | |
) | |
self.unet = UNet2DConditionModel.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="unet", revision=None | |
) | |
self.vae = AutoencoderKL.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", subfolder="vae", revision=None | |
) | |
checkpoint = torch.load( | |
'models/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt') | |
cfg = BEATsConfig(checkpoint['cfg']) | |
self.aud_encoder = BEATs(cfg) | |
self.aud_encoder.load_state_dict(checkpoint['model']) | |
self.aud_encoder.predictor = None | |
input_size = 768 * 3 | |
self.embedder = FGAEmbedder(input_size=input_size, output_size=768) | |
self.vae.eval() | |
self.unet.eval() | |
self.text_encoder.eval() | |
self.aud_encoder.eval() | |
if lora: | |
# Set correct lora layers | |
lora_attn_procs = {} | |
for name in self.unet.attn_processors.keys(): | |
cross_attention_dim = None if name.endswith( | |
"attn1.processor") else self.unet.config.cross_attention_dim | |
if name.startswith("mid_block"): | |
hidden_size = self.unet.config.block_out_channels[-1] | |
elif name.startswith("up_blocks"): | |
block_id = int(name[len("up_blocks.")]) | |
hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id] | |
elif name.startswith("down_blocks"): | |
block_id = int(name[len("down_blocks.")]) | |
hidden_size = self.unet.config.block_out_channels[block_id] | |
lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size, | |
cross_attention_dim=cross_attention_dim) | |
self.unet.set_attn_processor(lora_attn_procs) | |
self.lora_layers = AttnProcsLayers(self.unet.attn_processors) | |
self.lora_layers.eval() | |
lora_layers_learned_embeds = 'models/lora_layers_learned_embeds.bin' | |
self.lora_layers.load_state_dict(torch.load(lora_layers_learned_embeds, map_location=device)) | |
self.unet.load_attn_procs(lora_layers_learned_embeds) | |
self.embedder.eval() | |
embedder_learned_embeds = 'models/embedder_learned_embeds.bin' | |
self.embedder.load_state_dict(torch.load(embedder_learned_embeds, map_location=device)) | |
self.placeholder_token = '<*>' | |
num_added_tokens = self.tokenizer.add_tokens(self.placeholder_token) | |
if num_added_tokens == 0: | |
raise ValueError( | |
f"The tokenizer already contains the token {self.placeholder_token}. Please pass a different" | |
" `placeholder_token` that is not already in the tokenizer." | |
) | |
self.placeholder_token_id = self.tokenizer.convert_tokens_to_ids(self.placeholder_token) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
self.text_encoder.resize_token_embeddings(len(self.tokenizer)) | |
def greet(audio): | |
audio = audio[-1].astype(np.float32, order='C') / 32768.0 | |
weight_dtype = torch.float32 | |
prompt = 'a photo of <*>' | |
audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype) | |
aud_features = model.aud_encoder.extract_features(audio_values)[1] | |
audio_token = model.embedder(aud_features) | |
token_embeds = model.text_encoder.get_input_embeddings().weight.data | |
token_embeds[model.placeholder_token_id] = audio_token.clone() | |
pipeline = StableDiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
tokenizer=model.tokenizer, | |
text_encoder=model.text_encoder, | |
vae=model.vae, | |
unet=model.unet, | |
).to(device) | |
image = pipeline(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] | |
return image | |
if __name__ == "__main__": | |
lora = True | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model = AudioTokenWrapper(lora, device) | |
description = """<p> | |
This is a demo of <a href='https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken' target='_blank'>AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation</a>.<br><br> | |
In recent years, image generation has shown a great leap in performance, where diffusion models play a central role. Although generating high-quality images, such models are mainly conditioned on textual descriptions. This begs the question: "how can we adopt such models to be conditioned on other modalities?". We propose a novel method utilizing latent diffusion models trained for text-to-image-generation to generate images conditioned on audio recordings. Using a pre-trained audio encoding model, the proposed method encodes audio into a new token, which can be considered as an adaptation layer between the audio and text representations. Such a modeling paradigm requires a small number of trainable parameters, making the proposed approach appealing for lightweight optimization.<br><br> | |
For more information, please see the original <a href='https://arxiv.org/abs/2305.13050' target='_blank'>paper</a> and <a href='https://github.com/guyyariv/AudioToken' target='_blank'>repo</a>. | |
</p>""" | |
examples = [ | |
["assets/train.wav"], | |
["assets/dog barking.wav"], | |
["assets/airplane.wav"], | |
["assets/electric guitar.wav"], | |
["assets/female singer.wav"], | |
] | |
demo = gr.Interface( | |
fn=greet, | |
inputs="audio", | |
outputs="image", | |
title='AudioToken', | |
description=description, | |
examples=examples | |
) | |
demo.launch() | |