Spaces:
Runtime error
Runtime error
import streamlit as st | |
from datasets import load_dataset | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModel, Trainer, TrainingArguments, LineByLineTextDataset | |
# import json | |
import torch | |
def get_model(): | |
model = AutoModelForSequenceClassification.from_pretrained("siebert/sentiment-roberta-large-english", num_labels=2) | |
model.load_state_dict(torch.load('cached_model.pth', map_location=torch.device('cpu'))) | |
return model | |
def get_tokenizer(): | |
tokenizer = AutoTokenizer.from_pretrained("siebert/sentiment-roberta-large-english") | |
return tokenizer | |
def make_prediction(to_analyze): | |
model = get_model() | |
tokenizer = get_tokenizer() | |
to_return = model(**tokenizer([to_analyze,], return_tensors='pt')) | |
return to_return | |
st.header("Sentiment analysis on twitter datasets") | |
st.markdown("Here is a sentiment model further trained on a slice of a twitter dataset") | |
# st.markdown(""" | |
# <img width=700px src='https://imagez.tmz.com/image/73/4by3/2020/10/05/735aaee2f6b9464ca220e62ef797dab0_md.jpg'> | |
# """, unsafe_allow_html=True) | |
st.markdown(""" | |
<img width=700px | |
src='https://static.boredpanda.com/blog/wp-content/uploads/2017/05/celebrities-mean-tweets-reactions-309-592ebf04f173c__700.jpg'>""", unsafe_allow_html=True) | |
text = st.markdown("Try typing something here! \n You will see how much better our model is compared to the base model! No kidding") | |
# ^-- показать текстовое поле. В поле text лежит строка, которая находится там в данный момент | |
### Loading and tokenizing data | |
# data = load_dataset("carblacac/twitter-sentiment-analysis") | |
# tokenizer = AutoTokenizer.from_pretrained("siebert/sentiment-roberta-large-english") | |
# dataset = data.map(lambda xs: tokenizer(xs["text"], truncation=True, padding='max_length')) | |
# dataset = dataset.rename_column("feeling", "labels") | |
with st.form(key='input_form'): | |
to_analyze = st.text_input(label='Input text to be analyzed') | |
button = st.form_submit_button(label='Analyze') | |
if button: | |
if to_analyze: | |
pred = make_prediction(to_analyze) | |
st.markdown("Negative" if torch.argmax(pred.logits).item() == 0 else "Positive") | |
else: | |
st.markdown("Empty request. Please resubmit") | |
# classifier = pipeline('sentiment-analysis', model="distilbert-base-uncased-finetuned-sst-2-english") | |
# raw_predictions = classifier(text) | |
# тут уже знакомый вам код с huggingface.transformers -- его можно заменить на что угодно от fairseq до catboost | |
# st.markdown(f"{raw_predictions}") | |
# выводим результаты модели в текстовое поле, на потеху пользователю |