Added Face Analytics
Browse files- .gitignore +1 -0
- main.py +5 -0
- src/cat_and_dog/main.py +4 -1
- src/face_analytics/main.py +41 -0
- src/face_analytics/model.h5 +3 -0
- src/movie_reviews/main.py +1 -1
.gitignore
CHANGED
@@ -3,6 +3,7 @@
|
|
3 |
/src/base/__pycache__
|
4 |
/src/book_rec/__pycache__
|
5 |
/src/cat_and_dog/__pycache__
|
|
|
6 |
/src/movie_rec/__pycache__
|
7 |
/src/movie_2022_rec/__pycache__
|
8 |
/src/movie_reviews/__pycache__
|
|
|
3 |
/src/base/__pycache__
|
4 |
/src/book_rec/__pycache__
|
5 |
/src/cat_and_dog/__pycache__
|
6 |
+
/src/face_analytics/__pycache__
|
7 |
/src/movie_rec/__pycache__
|
8 |
/src/movie_2022_rec/__pycache__
|
9 |
/src/movie_reviews/__pycache__
|
main.py
CHANGED
@@ -3,6 +3,7 @@ from fastapi import FastAPI
|
|
3 |
# Importing Models and Schemas
|
4 |
from src.movie_reviews.main import movie_reviews, Schema as MovieReviewsSchema
|
5 |
from src.cat_and_dog.main import cat_and_dog, Schema as CatAndDogSchema
|
|
|
6 |
from src.book_rec.main import book_rec, Schema as BookRecSchema
|
7 |
from src.movie_rec.main import movie_rec, Schema as MovieRecSchema
|
8 |
from src.movie_2022_rec.main import movie_2022_rec, Schema as Movie2022RecSchema
|
@@ -42,6 +43,10 @@ def endpoint_movie_reviews(req: MovieReviewsSchema):
|
|
42 |
def endpoint_cat_and_dog(req: CatAndDogSchema):
|
43 |
return cat_and_dog(req)
|
44 |
|
|
|
|
|
|
|
|
|
45 |
@app.post("/book_rec")
|
46 |
def endpoint_book_rec(req: BookRecSchema):
|
47 |
return book_rec(req)
|
|
|
3 |
# Importing Models and Schemas
|
4 |
from src.movie_reviews.main import movie_reviews, Schema as MovieReviewsSchema
|
5 |
from src.cat_and_dog.main import cat_and_dog, Schema as CatAndDogSchema
|
6 |
+
from src.face_analytics.main import face_analytics, Schema as FaceAnalytics
|
7 |
from src.book_rec.main import book_rec, Schema as BookRecSchema
|
8 |
from src.movie_rec.main import movie_rec, Schema as MovieRecSchema
|
9 |
from src.movie_2022_rec.main import movie_2022_rec, Schema as Movie2022RecSchema
|
|
|
43 |
def endpoint_cat_and_dog(req: CatAndDogSchema):
|
44 |
return cat_and_dog(req)
|
45 |
|
46 |
+
@app.post("/face_analytics")
|
47 |
+
def endpoint_face_analytics(req: CatAndDogSchema):
|
48 |
+
return face_analytics(req)
|
49 |
+
|
50 |
@app.post("/book_rec")
|
51 |
def endpoint_book_rec(req: BookRecSchema):
|
52 |
return book_rec(req)
|
src/cat_and_dog/main.py
CHANGED
@@ -37,4 +37,7 @@ def predict(img_data, img_url):
|
|
37 |
img = img / 255.
|
38 |
pred = model.predict(img)[0, 0]
|
39 |
pred = float(pred)
|
40 |
-
|
|
|
|
|
|
|
|
37 |
img = img / 255.
|
38 |
pred = model.predict(img)[0, 0]
|
39 |
pred = float(pred)
|
40 |
+
|
41 |
+
return [
|
42 |
+
[round(1-pred, 3), round(pred, 3)],
|
43 |
+
]
|
src/face_analytics/main.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import tensorflow as tf
|
3 |
+
import io, base64, requests
|
4 |
+
from pydantic import BaseModel
|
5 |
+
|
6 |
+
# SCHEMA
|
7 |
+
class Schema(BaseModel):
|
8 |
+
resized_img_base64:str = None,
|
9 |
+
img_url:str = None
|
10 |
+
|
11 |
+
# Request Handler
|
12 |
+
def face_analytics(req):
|
13 |
+
resized_img_base64 = req.resized_img_base64
|
14 |
+
img_url = req.img_url
|
15 |
+
output = predict(resized_img_base64, img_url)
|
16 |
+
return output
|
17 |
+
|
18 |
+
model_path = "./src/face_analytics/model.h5"
|
19 |
+
model = tf.keras.models.load_model(model_path)
|
20 |
+
|
21 |
+
def predict(img_data, img_url):
|
22 |
+
if img_url == None:
|
23 |
+
content = img_data.replace(" ", "+")
|
24 |
+
converted = bytes(content, "utf-8")
|
25 |
+
img = base64.decodebytes(converted)
|
26 |
+
else:
|
27 |
+
img = requests.get(img_url).content
|
28 |
+
|
29 |
+
img = io.BytesIO(img)
|
30 |
+
img = tf.keras.preprocessing.image.load_img(img, target_size=model.input_shape[1:])
|
31 |
+
img = np.array(img)
|
32 |
+
img = img.reshape(1, *img.shape)
|
33 |
+
img = tf.keras.applications.inception_v3.preprocess_input(img)
|
34 |
+
pred = model.predict(img)
|
35 |
+
|
36 |
+
return [[round(j, 3) for j in i] for i in np.hstack([(1-pred).T, pred.T]).tolist()]
|
37 |
+
return [
|
38 |
+
[0.3, 0.7],
|
39 |
+
[0.2, 0.8],
|
40 |
+
[0.9, 0.1],
|
41 |
+
]
|
src/face_analytics/model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3f535da515d0b8fd513f410655f4fc6921825ca6511a67d2f5e9a44a211ea18
|
3 |
+
size 194103456
|
src/movie_reviews/main.py
CHANGED
@@ -54,7 +54,7 @@ def predict(text):
|
|
54 |
output = [0, 0]
|
55 |
output[pred] = 0.8
|
56 |
output[1-pred] = 0.2
|
57 |
-
return output
|
58 |
|
59 |
def preprocess(text):
|
60 |
text = text.lower() # Lowercase
|
|
|
54 |
output = [0, 0]
|
55 |
output[pred] = 0.8
|
56 |
output[1-pred] = 0.2
|
57 |
+
return [output]
|
58 |
|
59 |
def preprocess(text):
|
60 |
text = text.lower() # Lowercase
|