geetherb commited on
Commit
ac467ab
β€’
1 Parent(s): c5fb66b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +547 -0
app.py ADDED
@@ -0,0 +1,547 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import time
2
+ import math
3
+ from contextlib import nullcontext
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn as nn
7
+ from torch.nn import functional as F
8
+ import inspect
9
+ from dataclasses import dataclass
10
+ import streamlit as st
11
+ import pandas as pd
12
+ from rdkit import Chem
13
+ from rdkit.Chem import Draw
14
+
15
+
16
+ eval_interval = 250 # keep frequent because we'll overfit
17
+ eval_iters = 200
18
+ log_interval = 10 # don't print too too often
19
+ always_save_checkpoint = False
20
+ dataset = 'lipid_char'
21
+ gradient_accumulation_steps = 1
22
+ beta2 = 0.99 # make a bit bigger because number of tokens per iter is small
23
+ eval_only = False # if True, script exits right after the first eval
24
+ init_from = 'scratch' # 'scratch' or 'resume' or 'gpt2*'
25
+ bias = False # do we use bias inside LayerNorm and Linear layers?
26
+ weight_decay = 1e-1
27
+ beta1 = 0.9
28
+ grad_clip = 1.0 # clip gradients at this value, or disable if == 0.0
29
+ min_lr = 6e-5 # minimum learning rate, should be ~= learning_rate/10 per Chinchilla
30
+ backend = 'nccl' # 'nccl', 'gloo', etc.
31
+ device = 'cuda' # examples: 'cpu', 'cuda', 'cuda:0', 'cuda:1' etc., or try 'mps' on macbooks
32
+ dtype = 'bfloat16' if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else 'float16' # 'float32', 'bfloat16', or 'float16', the latter will auto implement a GradScaler
33
+ config_keys = [k for k,v in globals().items() if not k.startswith('_') and isinstance(v, (int, float, bool, str))]
34
+ config = {k: globals()[k] for k in config_keys}
35
+ master_process = True
36
+ torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul
37
+ torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn
38
+ device_type = 'cuda' if 'cuda' in device else 'cpu' # for later use in torch.autocast
39
+ ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
40
+ ctx = nullcontext() if device_type == 'cpu' else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
41
+
42
+
43
+ @st.cache_resource
44
+ class LayerNorm(nn.Module):
45
+ """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
46
+
47
+ def __init__(self, ndim, bias):
48
+ super().__init__()
49
+ self.weight = nn.Parameter(torch.ones(ndim))
50
+ self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
51
+
52
+ def forward(self, input):
53
+ return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
54
+
55
+ @st.cache_resource
56
+ class CausalSelfAttention(nn.Module):
57
+
58
+ def __init__(self, config):
59
+ super().__init__()
60
+ assert config.n_embd % config.n_head == 0
61
+ # key, query, value projections for all heads, but in a batch
62
+ self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd, bias=config.bias)
63
+ # output projection
64
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd, bias=config.bias)
65
+ # regularization
66
+ self.attn_dropout = nn.Dropout(config.dropout)
67
+ self.resid_dropout = nn.Dropout(config.dropout)
68
+ self.n_head = config.n_head
69
+ self.n_embd = config.n_embd
70
+ self.dropout = config.dropout
71
+ # flash attention make GPU go brrrrr but support is only in PyTorch >= 2.0
72
+ self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention')
73
+ if not self.flash:
74
+ print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
75
+ # causal mask to ensure that attention is only applied to the left in the input sequence
76
+ self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size))
77
+ .view(1, 1, config.block_size, config.block_size))
78
+
79
+ def forward(self, x):
80
+ B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
81
+
82
+ # calculate query, key, values for all heads in batch and move head forward to be the batch dim
83
+ q, k, v = self.c_attn(x).split(self.n_embd, dim=2)
84
+ k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
85
+ q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
86
+ v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
87
+
88
+ # causal self-attention; Self-attend: (B, nh, T, hs) x (B, nh, hs, T) -> (B, nh, T, T)
89
+ if self.flash:
90
+ # efficient attention using Flash Attention CUDA kernels
91
+ y = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=self.dropout if self.training else 0, is_causal=True)
92
+ else:
93
+ # manual implementation of attention
94
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
95
+ att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))
96
+ att = F.softmax(att, dim=-1)
97
+ att = self.attn_dropout(att)
98
+ y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
99
+ y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
100
+
101
+ # output projection
102
+ y = self.resid_dropout(self.c_proj(y))
103
+ return y
104
+
105
+ @st.cache_resource
106
+ class MLP(nn.Module):
107
+
108
+ def __init__(self, config):
109
+ super().__init__()
110
+ self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd, bias=config.bias)
111
+ self.gelu = nn.GELU()
112
+ self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd, bias=config.bias)
113
+ self.dropout = nn.Dropout(config.dropout)
114
+
115
+ def forward(self, x):
116
+ x = self.c_fc(x)
117
+ x = self.gelu(x)
118
+ x = self.c_proj(x)
119
+ x = self.dropout(x)
120
+ return x
121
+
122
+ @st.cache_resource
123
+ class Block(nn.Module):
124
+
125
+ def __init__(self, config):
126
+ super().__init__()
127
+ self.ln_1 = LayerNorm(config.n_embd, bias=config.bias)
128
+ self.attn = CausalSelfAttention(config)
129
+ self.ln_2 = LayerNorm(config.n_embd, bias=config.bias)
130
+ self.mlp = MLP(config)
131
+
132
+ def forward(self, x):
133
+ x = x + self.attn(self.ln_1(x))
134
+ x = x + self.mlp(self.ln_2(x))
135
+ return x
136
+
137
+ @dataclass
138
+ class GPTConfig:
139
+ block_size: int = 1024
140
+ vocab_size: int = 50304 # GPT-2 vocab_size of 50257, padded up to nearest multiple of 64 for efficiency
141
+ n_layer: int = 12
142
+ n_head: int = 12
143
+ n_embd: int = 768
144
+ dropout: float = 0.0
145
+ bias: bool = True # True: bias in Linears and LayerNorms, like GPT-2. False: a bit better and faster
146
+
147
+ @st.cache_resource
148
+ class GPT(nn.Module):
149
+
150
+ def __init__(self, config):
151
+ super().__init__()
152
+ assert config.vocab_size is not None
153
+ assert config.block_size is not None
154
+ self.config = config
155
+
156
+ self.transformer = nn.ModuleDict(dict(
157
+ wte = nn.Embedding(config.vocab_size, config.n_embd),
158
+ wpe = nn.Embedding(config.block_size, config.n_embd),
159
+ drop = nn.Dropout(config.dropout),
160
+ h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
161
+ ln_f = LayerNorm(config.n_embd, bias=config.bias),
162
+ ))
163
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
164
+ self.transformer.wte.weight = self.lm_head.weight # https://paperswithcode.com/method/weight-tying
165
+
166
+ # init all weights
167
+ self.apply(self._init_weights)
168
+ # apply special scaled init to the residual projections, per GPT-2 paper
169
+ for pn, p in self.named_parameters():
170
+ if pn.endswith('c_proj.weight'):
171
+ torch.nn.init.normal_(p, mean=0.0, std=0.02/math.sqrt(2 * config.n_layer))
172
+ # report number of parameters
173
+ print("number of parameters: %.2fM" % (self.get_num_params()/1e6,))
174
+
175
+ def get_num_params(self, non_embedding=True):
176
+ """
177
+ Return the number of parameters in the model.
178
+ For non-embedding count (default), the position embeddings get subtracted.
179
+ The token embeddings would too, except due to the parameter sharing these
180
+ params are actually used as weights in the final layer, so we include them.
181
+ """
182
+ n_params = sum(p.numel() for p in self.parameters())
183
+ if non_embedding:
184
+ n_params -= self.transformer.wpe.weight.numel()
185
+ return n_params
186
+
187
+ def _init_weights(self, module):
188
+ if isinstance(module, nn.Linear):
189
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
190
+ if module.bias is not None:
191
+ torch.nn.init.zeros_(module.bias)
192
+ elif isinstance(module, nn.Embedding):
193
+ torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
194
+
195
+ def forward(self, idx, targets=None):
196
+ device = idx.device
197
+ b, t = idx.size()
198
+ assert t <= self.config.block_size, f"Cannot forward sequence of length {t}, block size is only {self.config.block_size}"
199
+ pos = torch.arange(0, t, dtype=torch.long, device=device) # shape (t)
200
+
201
+ # forward the GPT model itself
202
+ tok_emb = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
203
+ pos_emb = self.transformer.wpe(pos) # position embeddings of shape (t, n_embd)
204
+ x = self.transformer.drop(tok_emb + pos_emb)
205
+ for block in self.transformer.h:
206
+ x = block(x)
207
+ x = self.transformer.ln_f(x)
208
+
209
+ if targets is not None:
210
+ # if we are given some desired targets also calculate the loss
211
+ logits = self.lm_head(x)
212
+ loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
213
+ else:
214
+ # inference-time mini-optimization: only forward the lm_head on the very last position
215
+ logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
216
+ loss = None
217
+ return logits, loss
218
+
219
+ def crop_block_size(self, block_size):
220
+ # model surgery to decrease the block size if necessary
221
+ # e.g. we may load the GPT2 pretrained model checkpoint (block size 1024)
222
+ # but want to use a smaller block size for some smaller, simpler model
223
+ assert block_size <= self.config.block_size
224
+ self.config.block_size = block_size
225
+ self.transformer.wpe.weight = nn.Parameter(self.transformer.wpe.weight[:block_size])
226
+ for block in self.transformer.h:
227
+ if hasattr(block.attn, 'bias'):
228
+ block.attn.bias = block.attn.bias[:,:,:block_size,:block_size]
229
+
230
+ @classmethod
231
+ def from_pretrained(cls, model_type, override_args=None):
232
+ assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
233
+ override_args = override_args or {} # default to empty dict
234
+ # only dropout can be overridden see more notes below
235
+ assert all(k == 'dropout' for k in override_args)
236
+ from transformers import GPT2LMHeadModel
237
+ print("loading weights from pretrained gpt: %s" % model_type)
238
+
239
+ # n_layer, n_head and n_embd are determined from model_type
240
+ config_args = {
241
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
242
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
243
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
244
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
245
+ }[model_type]
246
+ print("forcing vocab_size=50257, block_size=1024, bias=True")
247
+ config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
248
+ config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
249
+ config_args['bias'] = True # always True for GPT model checkpoints
250
+ # we can override the dropout rate, if desired
251
+ if 'dropout' in override_args:
252
+ print(f"overriding dropout rate to {override_args['dropout']}")
253
+ config_args['dropout'] = override_args['dropout']
254
+ # create a from-scratch initialized minGPT model
255
+ config = GPTConfig(**config_args)
256
+ model = GPT(config)
257
+ sd = model.state_dict()
258
+ sd_keys = sd.keys()
259
+ sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
260
+
261
+ # init a huggingface/transformers model
262
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
263
+ sd_hf = model_hf.state_dict()
264
+
265
+ # copy while ensuring all of the parameters are aligned and match in names and shapes
266
+ sd_keys_hf = sd_hf.keys()
267
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
268
+ sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
269
+ transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
270
+ # basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
271
+ # this means that we have to transpose these weights when we import them
272
+ assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
273
+ for k in sd_keys_hf:
274
+ if any(k.endswith(w) for w in transposed):
275
+ # special treatment for the Conv1D weights we need to transpose
276
+ assert sd_hf[k].shape[::-1] == sd[k].shape
277
+ with torch.no_grad():
278
+ sd[k].copy_(sd_hf[k].t())
279
+ else:
280
+ # vanilla copy over the other parameters
281
+ assert sd_hf[k].shape == sd[k].shape
282
+ with torch.no_grad():
283
+ sd[k].copy_(sd_hf[k])
284
+ return model
285
+
286
+ def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
287
+ # start with all of the candidate parameters
288
+ param_dict = {pn: p for pn, p in self.named_parameters()}
289
+ # filter out those that do not require grad
290
+ param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
291
+ # create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
292
+ # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
293
+ decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
294
+ nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
295
+ optim_groups = [
296
+ {'params': decay_params, 'weight_decay': weight_decay},
297
+ {'params': nodecay_params, 'weight_decay': 0.0}
298
+ ]
299
+ num_decay_params = sum(p.numel() for p in decay_params)
300
+ num_nodecay_params = sum(p.numel() for p in nodecay_params)
301
+ print(f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters")
302
+ print(f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters")
303
+ # Create AdamW optimizer and use the fused version if it is available
304
+ fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters
305
+ use_fused = fused_available and device_type == 'cuda'
306
+ extra_args = dict(fused=True) if use_fused else dict()
307
+ optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args)
308
+ print(f"using fused AdamW: {use_fused}")
309
+ return optimizer
310
+
311
+ def estimate_mfu(self, fwdbwd_per_iter, dt):
312
+ """ estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS """
313
+ # first estimate the number of flops we do per iteration.
314
+ # see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
315
+ N = self.get_num_params()
316
+ cfg = self.config
317
+ L, H, Q, T = cfg.n_layer, cfg.n_head, cfg.n_embd//cfg.n_head, cfg.block_size
318
+ flops_per_token = 6*N + 12*L*H*Q*T
319
+ flops_per_fwdbwd = flops_per_token * T
320
+ flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
321
+ # express our flops throughput as ratio of A100 bfloat16 peak flops
322
+ flops_achieved = flops_per_iter * (1.0/dt) # per second
323
+ flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
324
+ mfu = flops_achieved / flops_promised
325
+ return mfu
326
+
327
+ @torch.no_grad()
328
+ def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
329
+ while True:
330
+ # if the sequence context is growing too long we must crop it at block_size
331
+ idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
332
+ # forward the model to get the logits for the index in the sequence
333
+ logits, _ = self(idx_cond)
334
+ # pluck the logits at the final step and scale by desired temperature
335
+ logits = logits[:, -1, :] / temperature
336
+ # optionally crop the logits to only the top k options
337
+ if top_k is not None:
338
+ v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
339
+ logits[logits < v[:, [-1]]] = -float('Inf')
340
+ # apply softmax to convert logits to (normalized) probabilities
341
+ probs = F.softmax(logits, dim=-1)
342
+ # sample from the distribution
343
+ idx_next = torch.multinomial(probs, num_samples=1)
344
+ if idx_next.item() == 0:
345
+ break
346
+ else:
347
+ idx = torch.cat((idx, idx_next), dim=1)
348
+ return idx
349
+
350
+ @st.cache_data
351
+ def canonicalize(smiles):
352
+ mol = Chem.MolFromSmiles(smiles)
353
+ if mol is not None:
354
+ return Chem.MolToSmiles(mol)
355
+ else:
356
+ return None
357
+
358
+ @st.cache_data
359
+ def get_batch(split):
360
+ data = train_data if split == 'train' else val_data
361
+ ix = torch.randint(len(data) - block_size, (batch_size,))
362
+ x = torch.stack([torch.from_numpy((data[i:i+block_size]).astype(np.int64)) for i in ix])
363
+ y = torch.stack([torch.from_numpy((data[i+1:i+1+block_size]).astype(np.int64)) for i in ix])
364
+ if device_type == 'cuda':
365
+ x, y = x.pin_memory().to(device, non_blocking=True), y.pin_memory().to(device, non_blocking=True)
366
+ else:
367
+ x, y = x.to(device), y.to(device)
368
+ return x, y
369
+
370
+
371
+ st.subheader(":rainbow[LiPT: Generate New Molecules With Your Training Data]")
372
+ col1, col2, col3 = st.columns(3)
373
+ uploaded_file = st.file_uploader("Upload SMILES Data (SMILES should be in a column named smiles)", type="csv")
374
+ split_ratio = st.slider("Train-Test Split Ratio", min_value=0.01, max_value=0.99, value=0.9)
375
+ st.write("Train on {:.1f}% of data. Test on {:.1f}% of data.".format(split_ratio*100, 100-split_ratio*100))
376
+
377
+ with col1:
378
+ max_iters = st.number_input("Training Iterations", min_value=1000, value=4500, step=1)
379
+ dropout = st.number_input("Dropout", min_value=0.0, max_value=0.9, value=0.05)
380
+ learning_rate = st.number_input("Learning Rate", min_value=6e-5, max_value=1.0, value=1e-3, format="%.5f") # with baby networks can afford to go a bit higher
381
+
382
+ with col2:
383
+ model_complexity = st.number_input("Model Complexity", min_value=1, value=3, step=1)
384
+ grad_clip = st.number_input("Gradient Clipping", min_value=0.01, max_value=100.0, value=1.0) # clip gradients at this value, or disable if == 0.0
385
+ temperature = st.number_input("Randomness of Generation", min_value=0.01, max_value=100.0, value=1.0) # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
386
+
387
+ with col3:
388
+ batch_size = st.number_input("Batch Size", min_value=2, value=64, step=1)
389
+ block_size = st.number_input("Context Window", min_value=2, value=256, step=1) # context of up to 256 previous characters
390
+ num_samples = st.number_input(":violet[**Number of Molecules to Generate**]", min_value=1, value=20, step=1)
391
+
392
+ tokens_per_iter = gradient_accumulation_steps * batch_size * block_size
393
+ decay_lr = st.checkbox("Learning Rate Decay", value=True) # whether to decay the learning rate
394
+ n_layer = model_complexity
395
+ n_head = model_complexity
396
+ n_embd = 64 * model_complexity
397
+
398
+ if uploaded_file and st.button(":orange[**Train Model and Generate Molecules**]"):
399
+ lipid_data = pd.read_csv(uploaded_file).drop_duplicates(subset=['smiles'])
400
+ lipid_data['smiles'] = lipid_data['smiles'].apply(canonicalize)
401
+ lipid_data = lipid_data.dropna().sample(frac=1).reset_index(drop=True)
402
+ data = '\n'.join(lipid_data['smiles'])
403
+ chars = sorted(list(set(data)))
404
+ vocab_size = len(chars)
405
+ st.write("Number of Valid Lipids: {:d}".format(len(lipid_data)))
406
+ st.write("All unique characters:", ''.join(chars))
407
+ st.write(f"Vocabulary size: {vocab_size:,}")
408
+ stoi = {ch:i for i,ch in enumerate(chars)}
409
+ itos = {i:ch for i,ch in enumerate(chars)}
410
+ def encode(s):
411
+ return [stoi[c] for c in s]
412
+ def decode(l):
413
+ return ''.join([itos[i] for i in l])
414
+ lr_decay_iters = max_iters # make equal to max_iters usually
415
+ warmup_iters = max_iters // 50
416
+ n = len(data)
417
+ train_data = data[:int(n * split_ratio)]
418
+ val_data = data[int(n * split_ratio):]
419
+ train_ids = encode(train_data)
420
+ val_ids = encode(val_data)
421
+ st.write(f"{len(train_ids):,} tokens for training")
422
+ st.write(f"{len(val_ids):,} tokens for testing")
423
+ st.write(":orange[Patience is key 😎]")
424
+ train_data = np.array(train_ids, dtype=np.uint16)
425
+ val_data = np.array(val_ids, dtype=np.uint16)
426
+ meta = {'vocab_size': vocab_size, 'itos': itos, 'stoi': stoi}
427
+
428
+ iter_num = 0
429
+ best_val_loss = 1e9
430
+ meta_vocab_size = meta['vocab_size']
431
+ model_args = dict(n_layer=n_layer, n_head=n_head, n_embd=n_embd, block_size=block_size, bias=bias, vocab_size=None, dropout=dropout)
432
+ model_args['vocab_size'] = meta_vocab_size
433
+ gptconf = GPTConfig(**model_args)
434
+ model = GPT(gptconf)
435
+ if block_size < model.config.block_size:
436
+ model.crop_block_size(block_size)
437
+ model_args['block_size'] = block_size
438
+ model.to(device)
439
+ scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
440
+ optimizer = model.configure_optimizers(weight_decay, learning_rate, (beta1, beta2), device_type)
441
+ checkpoint = None
442
+
443
+ @torch.no_grad()
444
+ def estimate_loss():
445
+ out = {}
446
+ model.eval()
447
+ for split in ['train', 'val']:
448
+ losses = torch.zeros(eval_iters)
449
+ for k in range(eval_iters):
450
+ X, Y = get_batch(split)
451
+ with ctx:
452
+ logits, loss = model(X, Y)
453
+ losses[k] = loss.item()
454
+ out[split] = losses.mean()
455
+ model.train()
456
+ return out
457
+
458
+ def get_lr(it):
459
+ if it < warmup_iters:
460
+ return learning_rate * it / warmup_iters
461
+ if it > lr_decay_iters:
462
+ return min_lr
463
+ decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
464
+ assert 0 <= decay_ratio <= 1
465
+ coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
466
+ return min_lr + coeff * (learning_rate - min_lr)
467
+
468
+ X, Y = get_batch('train') # fetch the very first batch
469
+ t0 = time.time()
470
+ local_iter_num = 0 # number of iterations in the lifetime of this process
471
+ raw_model = model # unwrap DDP container if needed
472
+ running_mfu = -1.0
473
+
474
+ while True:
475
+ lr = get_lr(iter_num) if decay_lr else learning_rate
476
+ for param_group in optimizer.param_groups:
477
+ param_group['lr'] = lr
478
+
479
+ if iter_num % eval_interval == 0 and master_process:
480
+ losses = estimate_loss()
481
+ print(f"step {iter_num}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
482
+
483
+ if losses['val'] < best_val_loss or always_save_checkpoint:
484
+ best_val_loss = losses['val']
485
+ if iter_num > 0:
486
+ checkpoint = {
487
+ 'model': raw_model.state_dict(),
488
+ 'optimizer': optimizer.state_dict(),
489
+ 'model_args': model_args,
490
+ 'iter_num': iter_num,
491
+ 'best_val_loss': best_val_loss,
492
+ 'config': config,
493
+ }
494
+ print("saving checkpoint")
495
+ torch.save(checkpoint, 'ckpt.pt')
496
+ if iter_num == 0 and eval_only:
497
+ break
498
+ for micro_step in range(gradient_accumulation_steps):
499
+ with ctx:
500
+ logits, loss = model(X, Y)
501
+ loss = loss / gradient_accumulation_steps # scale the loss to account for gradient accumulation
502
+ X, Y = get_batch('train')
503
+ scaler.scale(loss).backward()
504
+ if grad_clip != 0.0:
505
+ scaler.unscale_(optimizer)
506
+ torch.nn.utils.clip_grad_norm_(model.parameters(), grad_clip)
507
+ scaler.step(optimizer)
508
+ scaler.update()
509
+ optimizer.zero_grad(set_to_none=True)
510
+ t1 = time.time()
511
+ dt = t1 - t0
512
+ t0 = t1
513
+ if iter_num % log_interval == 0 and master_process:
514
+ lossf = loss.item() * gradient_accumulation_steps
515
+ if local_iter_num >= 5: # let the training loop settle a bit
516
+ mfu = raw_model.estimate_mfu(batch_size * gradient_accumulation_steps, dt)
517
+ running_mfu = mfu if running_mfu == -1.0 else 0.9*running_mfu + 0.1*mfu
518
+ print(f"iter {iter_num}: loss {lossf:.4f}, time {dt*1000:.2f}ms, mfu {running_mfu*100:.2f}%")
519
+ iter_num += 1
520
+ local_iter_num += 1
521
+ if iter_num > max_iters:
522
+ break
523
+
524
+ start = "\n"
525
+ max_new_tokens = 512 # number of tokens generated in each sample
526
+ top_k = 100 # retain only the top_k most likely tokens, clamp others to have 0 probability
527
+ start_ids = encode(start)
528
+ x = (torch.tensor(start_ids, dtype=torch.long, device=device)[None, ...])
529
+ gen_smiles = []
530
+ with torch.no_grad():
531
+ with ctx:
532
+ while len(gen_smiles) < num_samples:
533
+ y = model.generate(x, max_new_tokens, temperature=temperature, top_k=top_k)
534
+ smiles = decode(y[0].tolist()).replace('\n', '')
535
+ mol = Chem.MolFromSmiles(smiles)
536
+ if mol:
537
+ smiles = Chem.MolToSmiles(mol)
538
+ if (smiles not in gen_smiles) and (smiles not in data):
539
+ gen_smiles.append(smiles)
540
+
541
+ print(gen_smiles)
542
+ smiles_df = pd.DataFrame(gen_smiles, columns=['smiles'])
543
+ st.table(smiles_df)
544
+ csv_data = smiles_df.to_csv(index=False)
545
+ st.download_button(label="Download CSV", data=csv_data, file_name="generated_smiles.csv", mime="text/csv")
546
+ st.image(Draw.MolToImage(Chem.MolFromSmiles(gen_smiles[0]), size=(600, 600)), caption='First Generated Molecule', use_column_width=True)
547
+