gdTharusha's picture
Update app.py
772383d verified
raw
history blame
4.09 kB
import gradio as gr
from PIL import Image, ImageEnhance
import torch
import torch.nn.functional as F
from torchvision import transforms
from torchvision.models import resnet34
from torchvision.models.segmentation import deeplabv3_resnet50
import numpy as np
import cv2
# Load a pre-trained ResNet model for remastering
resnet_model = resnet34(pretrained=True)
resnet_model.eval()
# Load a pre-trained DeepLab model for segmentation (optional for advanced remastering)
deeplab_model = deeplabv3_resnet50(pretrained=True)
deeplab_model.eval()
# Define the upscaling function using super-resolution techniques
def upscale_image(image, upscale_factor=2):
# Convert the image to a tensor and upscale it using a neural network
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: x.unsqueeze(0))
])
img_tensor = preprocess(image)
upscaled_tensor = F.interpolate(img_tensor, scale_factor=upscale_factor, mode='bicubic', align_corners=False)
upscaled_image = transforms.ToPILImage()(upscaled_tensor.squeeze())
return upscaled_image
# Define the remastering function
def remaster_image(image, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0):
# Adjust color range
enhancer = ImageEnhance.Color(image)
image = enhancer.enhance(color_range)
# Adjust sharpness
enhancer = ImageEnhance.Sharpness(image)
image = enhancer.enhance(sharpness)
# Apply a simulated HDR effect using tone mapping
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(hdr_intensity)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(color_grading)
# Optional: Use segmentation to remaster specific regions
input_tensor = transforms.ToTensor()(image).unsqueeze(0)
with torch.no_grad():
output = deeplab_model(input_tensor)['out'][0]
output_predictions = output.argmax(0)
# Process each segmented region (e.g., sky, water) differently (optional)
# Example: Apply a slight blur to the sky region to create a dreamy effect
mask = output_predictions.byte().cpu().numpy()
segmented_image = np.array(image)
segmented_image[mask == 15] = cv2.GaussianBlur(segmented_image[mask == 15], (5, 5), 0)
final_image = Image.fromarray(segmented_image)
return final_image
# Process function for Gradio
def process_image(image, upscale=False, upscale_factor=2, remaster=False, color_range=1.0, sharpness=1.0, hdr_intensity=1.0, tone_mapping=1.0, color_grading=1.0):
if upscale:
image = upscale_image(image, upscale_factor)
if remaster:
image = remaster_image(image, color_range, sharpness, hdr_intensity, tone_mapping, color_grading)
return image
# Gradio UI
with gr.Blocks() as demo:
with gr.Row():
image_input = gr.Image(label="Upload Image", type="pil")
image_output = gr.Image(label="Output Image")
with gr.Row():
with gr.Group():
gr.Markdown("### Upscaling Options")
upscale_checkbox = gr.Checkbox(label="Apply Upscaling")
upscale_factor = gr.Slider(1, 8, value=2, label="Upscale Factor")
with gr.Group():
gr.Markdown("### Remastering Options")
remaster_checkbox = gr.Checkbox(label="Apply Remastering")
color_range = gr.Slider(0.5, 2.0, value=1.0, label="Dynamic Color Range")
sharpness = gr.Slider(0.5, 2.0, value=1.0, label="Sharpness")
hdr_intensity = gr.Slider(0.5, 2.0, value=1.0, label="HDR Intensity")
tone_mapping = gr.Slider(0.5, 2.0, value=1.0, label="Tone Mapping")
color_grading = gr.Slider(0.5, 2.0, value=1.0, label="Color Grading")
process_button = gr.Button("Process Image")
process_button.click(
process_image,
inputs=[image_input, upscale_checkbox, upscale_factor, remaster_checkbox, color_range, sharpness, hdr_intensity, tone_mapping, color_grading],
outputs=image_output
)
demo.launch()