Harisreedhar commited on
Commit
226cc7a
·
1 Parent(s): cf144f1
Files changed (7) hide show
  1. app.py +28 -27
  2. face_analyser.py +90 -25
  3. face_enhancer.py +32 -19
  4. face_swapper.py +53 -91
  5. nsfw_detector.py +9 -5
  6. swapper.py +0 -106
  7. utils.py +129 -5
app.py CHANGED
@@ -17,13 +17,12 @@ import concurrent.futures
17
  from moviepy.editor import VideoFileClip
18
 
19
  from nsfw_detector import get_nsfw_detector
20
- from face_swapper import Inswapper, paste_to_whole
21
  from face_analyser import detect_conditions, get_analysed_data, swap_options_list
22
- from face_enhancer import load_face_enhancer_model, face_enhancer_list, gfpgan_enhance, realesrgan_enhance
23
  from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
24
  from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref
25
 
26
-
27
  ## ------------------------------ USER ARGS ------------------------------
28
 
29
  parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
@@ -69,9 +68,12 @@ FACE_ANALYSER = None
69
  FACE_ENHANCER = None
70
  FACE_PARSER = None
71
  NSFW_DETECTOR = None
 
 
 
72
 
73
  ## ------------------------------ SET EXECUTION PROVIDER ------------------------------
74
- # Note: For AMD,MAC or non CUDA users, change settings here
75
 
76
  PROVIDER = ["CPUExecutionProvider"]
77
 
@@ -88,7 +90,7 @@ else:
88
  print("\n********** Running on CPU **********\n")
89
 
90
  device = "cuda" if USE_CUDA else "cpu"
91
-
92
 
93
  ## ------------------------------ LOAD MODELS ------------------------------
94
 
@@ -223,7 +225,7 @@ def process(
223
  yield f"### \n 🔞 {message}", *ui_before()
224
  assert not nsfw, message
225
  return False
226
- if device == "cuda": torch.cuda.empty_cache()
227
 
228
  yield "### \n ⌛ Analysing face data...", *ui_before()
229
  if condition != "Specific Face":
@@ -241,26 +243,24 @@ def process(
241
 
242
  yield "### \n ⌛ Swapping faces...", *ui_before()
243
  preds, aimgs, matrs = FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources)
244
- torch.cuda.empty_cache()
245
 
246
  if enable_face_parser:
247
  yield "### \n ⌛ Applying face-parsing mask...", *ui_before()
248
  for idx, (pred, aimg) in tqdm(enumerate(zip(preds, aimgs)), total=len(preds), desc="Face parsing"):
249
  preds[idx] = swap_regions(pred, aimg, FACE_PARSER, smooth_mask, includes=includes, blur=int(blur_amount))
250
- torch.cuda.empty_cache()
251
 
252
  if face_enhancer_name != "NONE":
253
  yield f"### \n ⌛ Enhancing faces with {face_enhancer_name}...", *ui_before()
254
  for idx, pred in tqdm(enumerate(preds), total=len(preds), desc=f"{face_enhancer_name}"):
255
- if face_enhancer_name == 'GFPGAN':
256
- pred = gfpgan_enhance(pred, FACE_ENHANCER)
257
- elif face_enhancer_name.startswith("REAL-ESRGAN"):
258
- pred = realesrgan_enhance(pred, FACE_ENHANCER)
259
-
260
  preds[idx] = cv2.resize(pred, (512,512))
261
  aimgs[idx] = cv2.resize(aimgs[idx], (512,512))
262
  matrs[idx] /= 0.25
263
- torch.cuda.empty_cache()
 
264
 
265
  split_preds = split_list_by_lengths(preds, num_faces_per_frame)
266
  del preds
@@ -270,19 +270,19 @@ def process(
270
  del matrs
271
 
272
  yield "### \n ⌛ Post-processing...", *ui_before()
273
- def process_frame(frame_idx, frame_img, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right):
274
  whole_img_path = frame_img
275
  whole_img = cv2.imread(whole_img_path)
276
  for p, a, m in zip(split_preds[frame_idx], split_aimgs[frame_idx], split_matrs[frame_idx]):
277
  whole_img = paste_to_whole(p, a, m, whole_img, laplacian_blend=enable_laplacian_blend, crop_mask=(crop_top, crop_bott, crop_left, crop_right))
278
  cv2.imwrite(whole_img_path, whole_img)
279
 
280
- def optimize_processing(image_sequence, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right):
281
  with concurrent.futures.ThreadPoolExecutor() as executor:
282
  futures = []
283
  for idx, frame_img in enumerate(image_sequence):
284
  future = executor.submit(
285
- process_frame,
286
  idx,
287
  frame_img,
288
  split_preds,
@@ -302,8 +302,7 @@ def process(
302
  except Exception as e:
303
  print(f"An error occurred: {e}")
304
 
305
- # Usage:
306
- optimize_processing(
307
  image_sequence,
308
  split_preds,
309
  split_aimgs,
@@ -432,13 +431,13 @@ def update_radio(value):
432
 
433
 
434
  def swap_option_changed(value):
435
- if value == swap_options_list[1] or value == swap_options_list[2]:
436
  return (
437
  gr.update(visible=True),
438
  gr.update(visible=False),
439
  gr.update(visible=True),
440
  )
441
- elif value == swap_options_list[5]:
442
  return (
443
  gr.update(visible=False),
444
  gr.update(visible=True),
@@ -497,7 +496,7 @@ def stop_running():
497
  if hasattr(STREAMER, "stop"):
498
  STREAMER.stop()
499
  STREAMER = None
500
- return "Cancelled"
501
 
502
 
503
  def slider_changed(show_frame, video_path, frame_index):
@@ -538,8 +537,10 @@ with gr.Blocks(css=css) as interface:
538
  with gr.Row():
539
  with gr.Column(scale=0.4):
540
  with gr.Tab("📄 Swap Condition"):
541
- swap_option = gr.Radio(
542
  swap_options_list,
 
 
543
  show_label=False,
544
  value=swap_options_list[0],
545
  interactive=True,
@@ -636,7 +637,7 @@ with gr.Blocks(css=css) as interface:
636
  )
637
 
638
  face_enhancer_name = gr.Dropdown(
639
- face_enhancer_list, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
640
  )
641
 
642
  source_image_input = gr.Image(
@@ -675,8 +676,8 @@ with gr.Blocks(css=css) as interface:
675
  )
676
 
677
  with gr.Box(visible=True) as input_video_group:
678
- # vid_widget = gr.Video if USE_COLAB else gr.Text
679
- video_input = gr.Video(
680
  label="Target Video Path", interactive=True
681
  )
682
  with gr.Accordion("✂️ Trim video", open=False):
@@ -837,7 +838,7 @@ with gr.Blocks(css=css) as interface:
837
  ]
838
 
839
  swap_event = swap_button.click(
840
- fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
841
  )
842
 
843
  cancel_button.click(
 
17
  from moviepy.editor import VideoFileClip
18
 
19
  from nsfw_detector import get_nsfw_detector
20
+ from face_swapper import Inswapper, paste_to_whole, place_foreground_on_background
21
  from face_analyser import detect_conditions, get_analysed_data, swap_options_list
22
+ from face_enhancer import get_available_enhancer_names, load_face_enhancer_model
23
  from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
24
  from utils import trim_video, StreamerThread, ProcessBar, open_directory, split_list_by_lengths, merge_img_sequence_from_ref
25
 
 
26
  ## ------------------------------ USER ARGS ------------------------------
27
 
28
  parser = argparse.ArgumentParser(description="Swap-Mukham Face Swapper")
 
68
  FACE_ENHANCER = None
69
  FACE_PARSER = None
70
  NSFW_DETECTOR = None
71
+ FACE_ENHANCER_LIST = ["NONE"]
72
+ FACE_ENHANCER_LIST.extend(get_available_enhancer_names())
73
+
74
 
75
  ## ------------------------------ SET EXECUTION PROVIDER ------------------------------
76
+ # Note: Non CUDA users may change settings here
77
 
78
  PROVIDER = ["CPUExecutionProvider"]
79
 
 
90
  print("\n********** Running on CPU **********\n")
91
 
92
  device = "cuda" if USE_CUDA else "cpu"
93
+ EMPTY_CACHE = lambda: torch.cuda.empty_cache() if device == "cuda" else None
94
 
95
  ## ------------------------------ LOAD MODELS ------------------------------
96
 
 
225
  yield f"### \n 🔞 {message}", *ui_before()
226
  assert not nsfw, message
227
  return False
228
+ EMPTY_CACHE()
229
 
230
  yield "### \n ⌛ Analysing face data...", *ui_before()
231
  if condition != "Specific Face":
 
243
 
244
  yield "### \n ⌛ Swapping faces...", *ui_before()
245
  preds, aimgs, matrs = FACE_SWAPPER.batch_forward(whole_frame_list, analysed_targets, analysed_sources)
246
+ EMPTY_CACHE()
247
 
248
  if enable_face_parser:
249
  yield "### \n ⌛ Applying face-parsing mask...", *ui_before()
250
  for idx, (pred, aimg) in tqdm(enumerate(zip(preds, aimgs)), total=len(preds), desc="Face parsing"):
251
  preds[idx] = swap_regions(pred, aimg, FACE_PARSER, smooth_mask, includes=includes, blur=int(blur_amount))
252
+ EMPTY_CACHE()
253
 
254
  if face_enhancer_name != "NONE":
255
  yield f"### \n ⌛ Enhancing faces with {face_enhancer_name}...", *ui_before()
256
  for idx, pred in tqdm(enumerate(preds), total=len(preds), desc=f"{face_enhancer_name}"):
257
+ enhancer_model, enhancer_model_runner = FACE_ENHANCER
258
+ pred = enhancer_model_runner(pred, enhancer_model)
 
 
 
259
  preds[idx] = cv2.resize(pred, (512,512))
260
  aimgs[idx] = cv2.resize(aimgs[idx], (512,512))
261
  matrs[idx] /= 0.25
262
+
263
+ EMPTY_CACHE()
264
 
265
  split_preds = split_list_by_lengths(preds, num_faces_per_frame)
266
  del preds
 
270
  del matrs
271
 
272
  yield "### \n ⌛ Post-processing...", *ui_before()
273
+ def post_process(frame_idx, frame_img, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right):
274
  whole_img_path = frame_img
275
  whole_img = cv2.imread(whole_img_path)
276
  for p, a, m in zip(split_preds[frame_idx], split_aimgs[frame_idx], split_matrs[frame_idx]):
277
  whole_img = paste_to_whole(p, a, m, whole_img, laplacian_blend=enable_laplacian_blend, crop_mask=(crop_top, crop_bott, crop_left, crop_right))
278
  cv2.imwrite(whole_img_path, whole_img)
279
 
280
+ def concurrent_post_process(image_sequence, split_preds, split_aimgs, split_matrs, enable_laplacian_blend, crop_top, crop_bott, crop_left, crop_right):
281
  with concurrent.futures.ThreadPoolExecutor() as executor:
282
  futures = []
283
  for idx, frame_img in enumerate(image_sequence):
284
  future = executor.submit(
285
+ post_process,
286
  idx,
287
  frame_img,
288
  split_preds,
 
302
  except Exception as e:
303
  print(f"An error occurred: {e}")
304
 
305
+ concurrent_post_process(
 
306
  image_sequence,
307
  split_preds,
308
  split_aimgs,
 
431
 
432
 
433
  def swap_option_changed(value):
434
+ if value.startswith("Age"):
435
  return (
436
  gr.update(visible=True),
437
  gr.update(visible=False),
438
  gr.update(visible=True),
439
  )
440
+ elif value == "Specific Face":
441
  return (
442
  gr.update(visible=False),
443
  gr.update(visible=True),
 
496
  if hasattr(STREAMER, "stop"):
497
  STREAMER.stop()
498
  STREAMER = None
499
+ yield "cancelled !"
500
 
501
 
502
  def slider_changed(show_frame, video_path, frame_index):
 
537
  with gr.Row():
538
  with gr.Column(scale=0.4):
539
  with gr.Tab("📄 Swap Condition"):
540
+ swap_option = gr.Dropdown(
541
  swap_options_list,
542
+ info="Choose which face or faces in the target image to swap.",
543
+ multiselect=False,
544
  show_label=False,
545
  value=swap_options_list[0],
546
  interactive=True,
 
637
  )
638
 
639
  face_enhancer_name = gr.Dropdown(
640
+ FACE_ENHANCER_LIST, label="Face Enhancer", value="NONE", multiselect=False, interactive=True
641
  )
642
 
643
  source_image_input = gr.Image(
 
676
  )
677
 
678
  with gr.Box(visible=True) as input_video_group:
679
+ vid_widget = gr.Video if USE_COLAB else gr.Text
680
+ video_input = vid_widget(
681
  label="Target Video Path", interactive=True
682
  )
683
  with gr.Accordion("✂️ Trim video", open=False):
 
838
  ]
839
 
840
  swap_event = swap_button.click(
841
+ fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True,
842
  )
843
 
844
  cancel_button.click(
face_analyser.py CHANGED
@@ -5,24 +5,58 @@ from tqdm import tqdm
5
  from utils import scale_bbox_from_center
6
 
7
  detect_conditions = [
 
8
  "left most",
9
  "right most",
10
  "top most",
11
  "bottom most",
12
- "most width",
13
- "most height",
14
- "best detection",
15
  ]
16
 
17
  swap_options_list = [
18
- "All face",
 
19
  "Age less than",
20
  "Age greater than",
21
  "All Male",
22
  "All Female",
23
- "Specific Face",
 
 
 
 
 
 
24
  ]
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
  def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0):
27
  faces = model.get(image)
28
  if scale != 1: # landmark-scale
@@ -35,25 +69,7 @@ def analyse_face(image, model, return_single_face=True, detect_condition="best d
35
  if not return_single_face:
36
  return faces
37
 
38
- total_faces = len(faces)
39
- if total_faces == 1:
40
- return faces[0]
41
-
42
- print(f"{total_faces} face detected. Using {detect_condition} face.")
43
- if detect_condition == "left most":
44
- return sorted(faces, key=lambda face: face["bbox"][0])[0]
45
- elif detect_condition == "right most":
46
- return sorted(faces, key=lambda face: face["bbox"][0])[-1]
47
- elif detect_condition == "top most":
48
- return sorted(faces, key=lambda face: face["bbox"][1])[0]
49
- elif detect_condition == "bottom most":
50
- return sorted(faces, key=lambda face: face["bbox"][1])[-1]
51
- elif detect_condition == "most width":
52
- return sorted(faces, key=lambda face: face["bbox"][2])[-1]
53
- elif detect_condition == "most height":
54
- return sorted(faces, key=lambda face: face["bbox"][3])[-1]
55
- elif detect_condition == "best detection":
56
- return sorted(faces, key=lambda face: face["det_score"])[-1]
57
 
58
 
59
  def cosine_distance(a, b):
@@ -90,7 +106,7 @@ def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition
90
 
91
  n_faces = 0
92
  for analysed_face in analysed_faces:
93
- if swap_condition == "All face":
94
  analysed_target_list.append(analysed_face)
95
  analysed_source_list.append(analysed_source)
96
  whole_frame_eql_list.append(frame_path)
@@ -124,6 +140,55 @@ def get_analysed_data(face_analyser, image_sequence, source_data, swap_condition
124
  whole_frame_eql_list.append(frame_path)
125
  n_faces += 1
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  num_faces_per_frame.append(n_faces)
128
 
129
  return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame
 
5
  from utils import scale_bbox_from_center
6
 
7
  detect_conditions = [
8
+ "best detection",
9
  "left most",
10
  "right most",
11
  "top most",
12
  "bottom most",
13
+ "middle",
14
+ "biggest",
15
+ "smallest",
16
  ]
17
 
18
  swap_options_list = [
19
+ "All Face",
20
+ "Specific Face",
21
  "Age less than",
22
  "Age greater than",
23
  "All Male",
24
  "All Female",
25
+ "Left Most",
26
+ "Right Most",
27
+ "Top Most",
28
+ "Bottom Most",
29
+ "Middle",
30
+ "Biggest",
31
+ "Smallest",
32
  ]
33
 
34
+ def get_single_face(faces, method="best detection"):
35
+ total_faces = len(faces)
36
+ if total_faces == 1:
37
+ return faces[0]
38
+
39
+ print(f"{total_faces} face detected. Using {method} face.")
40
+ if method == "best detection":
41
+ return sorted(faces, key=lambda face: face["det_score"])[-1]
42
+ elif method == "left most":
43
+ return sorted(faces, key=lambda face: face["bbox"][0])[0]
44
+ elif method == "right most":
45
+ return sorted(faces, key=lambda face: face["bbox"][0])[-1]
46
+ elif method == "top most":
47
+ return sorted(faces, key=lambda face: face["bbox"][1])[0]
48
+ elif method == "bottom most":
49
+ return sorted(faces, key=lambda face: face["bbox"][1])[-1]
50
+ elif method == "middle":
51
+ return sorted(faces, key=lambda face: (
52
+ (face["bbox"][0] + face["bbox"][2]) / 2 - 0.5) ** 2 +
53
+ ((face["bbox"][1] + face["bbox"][3]) / 2 - 0.5) ** 2)[len(faces) // 2]
54
+ elif method == "biggest":
55
+ return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[-1]
56
+ elif method == "smallest":
57
+ return sorted(faces, key=lambda face: (face["bbox"][2] - face["bbox"][0]) * (face["bbox"][3] - face["bbox"][1]))[0]
58
+
59
+
60
  def analyse_face(image, model, return_single_face=True, detect_condition="best detection", scale=1.0):
61
  faces = model.get(image)
62
  if scale != 1: # landmark-scale
 
69
  if not return_single_face:
70
  return faces
71
 
72
+ return get_single_face(faces, method=detect_condition)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
 
75
  def cosine_distance(a, b):
 
106
 
107
  n_faces = 0
108
  for analysed_face in analysed_faces:
109
+ if swap_condition == "All Face":
110
  analysed_target_list.append(analysed_face)
111
  analysed_source_list.append(analysed_source)
112
  whole_frame_eql_list.append(frame_path)
 
140
  whole_frame_eql_list.append(frame_path)
141
  n_faces += 1
142
 
143
+ if swap_condition == "Left Most":
144
+ analysed_face = get_single_face(analysed_faces, method="left most")
145
+ analysed_target_list.append(analysed_face)
146
+ analysed_source_list.append(analysed_source)
147
+ whole_frame_eql_list.append(frame_path)
148
+ n_faces += 1
149
+
150
+ elif swap_condition == "Right Most":
151
+ analysed_face = get_single_face(analysed_faces, method="right most")
152
+ analysed_target_list.append(analysed_face)
153
+ analysed_source_list.append(analysed_source)
154
+ whole_frame_eql_list.append(frame_path)
155
+ n_faces += 1
156
+
157
+ elif swap_condition == "Top Most":
158
+ analysed_face = get_single_face(analysed_faces, method="top most")
159
+ analysed_target_list.append(analysed_face)
160
+ analysed_source_list.append(analysed_source)
161
+ whole_frame_eql_list.append(frame_path)
162
+ n_faces += 1
163
+
164
+ elif swap_condition == "Bottom Most":
165
+ analysed_face = get_single_face(analysed_faces, method="bottom most")
166
+ analysed_target_list.append(analysed_face)
167
+ analysed_source_list.append(analysed_source)
168
+ whole_frame_eql_list.append(frame_path)
169
+ n_faces += 1
170
+
171
+ elif swap_condition == "Middle":
172
+ analysed_face = get_single_face(analysed_faces, method="middle")
173
+ analysed_target_list.append(analysed_face)
174
+ analysed_source_list.append(analysed_source)
175
+ whole_frame_eql_list.append(frame_path)
176
+ n_faces += 1
177
+
178
+ elif swap_condition == "Biggest":
179
+ analysed_face = get_single_face(analysed_faces, method="biggest")
180
+ analysed_target_list.append(analysed_face)
181
+ analysed_source_list.append(analysed_source)
182
+ whole_frame_eql_list.append(frame_path)
183
+ n_faces += 1
184
+
185
+ elif swap_condition == "Smallest":
186
+ analysed_face = get_single_face(analysed_faces, method="smallest")
187
+ analysed_target_list.append(analysed_face)
188
+ analysed_source_list.append(analysed_source)
189
+ whole_frame_eql_list.append(frame_path)
190
+ n_faces += 1
191
+
192
  num_faces_per_frame.append(n_faces)
193
 
194
  return analysed_target_list, analysed_source_list, whole_frame_eql_list, num_faces_per_frame
face_enhancer.py CHANGED
@@ -4,36 +4,49 @@ import gfpgan
4
  from PIL import Image
5
  from upscaler.RealESRGAN import RealESRGAN
6
 
7
- face_enhancer_list = ['NONE', 'GFPGAN', 'REAL-ESRGAN 2x', 'REAL-ESRGAN 4x', 'REAL-ESRGAN 8x']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
  def load_face_enhancer_model(name='GFPGAN', device="cpu"):
 
 
 
10
  if name == 'GFPGAN':
11
- model_path = "./assets/pretrained_models/GFPGANv1.4.pth"
12
- model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
13
- model = gfpgan.GFPGANer(model_path=model_path, upscale=1)
14
  elif name == 'REAL-ESRGAN 2x':
15
- model_path = "./assets/pretrained_models/RealESRGAN_x2.pth"
16
- model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
17
  model = RealESRGAN(device, scale=2)
18
  model.load_weights(model_path, download=False)
19
  elif name == 'REAL-ESRGAN 4x':
20
- model_path = "./assets/pretrained_models/RealESRGAN_x4.pth"
21
- model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
22
  model = RealESRGAN(device, scale=4)
23
  model.load_weights(model_path, download=False)
24
  elif name == 'REAL-ESRGAN 8x':
25
- model_path = "./assets/pretrained_models/RealESRGAN_x8.pth"
26
- model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
27
  model = RealESRGAN(device, scale=8)
28
  model.load_weights(model_path, download=False)
29
  else:
30
  model = None
31
- return model
32
-
33
- def gfpgan_enhance(img, model, has_aligned=True):
34
- _, imgs, _ = model.enhance(img, paste_back=True, has_aligned=has_aligned)
35
- return imgs[0]
36
-
37
- def realesrgan_enhance(img, model):
38
- img = model.predict(img)
39
- return img
 
4
  from PIL import Image
5
  from upscaler.RealESRGAN import RealESRGAN
6
 
7
+
8
+ def gfpgan_runner(img, model):
9
+ _, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
10
+ return imgs[0]
11
+
12
+
13
+ def realesrgan_runner(img, model):
14
+ img = model.predict(img)
15
+ return img
16
+
17
+
18
+ supported_enhancers = {
19
+ "GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
20
+ "REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
21
+ "REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
22
+ "REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner)
23
+ }
24
+
25
+
26
+ def get_available_enhancer_names():
27
+ available = []
28
+ for name, data in supported_enhancers.items():
29
+ path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0])
30
+ if os.path.exists(path):
31
+ available.append(name)
32
+ return available
33
+
34
 
35
  def load_face_enhancer_model(name='GFPGAN', device="cpu"):
36
+ assert name in get_available_enhancer_names(), f"Face enhancer {name} unavailable."
37
+ model_path, model_runner = supported_enhancers.get(name)
38
+ model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
39
  if name == 'GFPGAN':
40
+ model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
 
 
41
  elif name == 'REAL-ESRGAN 2x':
 
 
42
  model = RealESRGAN(device, scale=2)
43
  model.load_weights(model_path, download=False)
44
  elif name == 'REAL-ESRGAN 4x':
 
 
45
  model = RealESRGAN(device, scale=4)
46
  model.load_weights(model_path, download=False)
47
  elif name == 'REAL-ESRGAN 8x':
 
 
48
  model = RealESRGAN(device, scale=8)
49
  model.load_weights(model_path, download=False)
50
  else:
51
  model = None
52
+ return (model, model_runner)
 
 
 
 
 
 
 
 
face_swapper.py CHANGED
@@ -7,6 +7,8 @@ import numpy as np
7
  from tqdm import tqdm
8
  from onnx import numpy_helper
9
  from skimage import transform as trans
 
 
10
 
11
  arcface_dst = np.array(
12
  [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
@@ -62,33 +64,44 @@ class Inswapper():
62
  self.input_size = tuple(input_shape[2:4][::-1])
63
 
64
  def forward(self, imgs, latents):
65
- batch_preds = []
66
  for img, latent in zip(imgs, latents):
67
  img = (img - self.input_mean) / self.input_std
68
  pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
69
- batch_preds.append(pred)
70
- return batch_preds
71
 
72
  def get(self, imgs, target_faces, source_faces):
73
- batch_preds = []
74
- batch_aimgs = []
75
- batch_ms = []
76
- for img, target_face, source_face in zip(imgs, target_faces, source_faces):
77
- if isinstance(img, str):
78
- img = cv2.imread(img)
79
- aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
80
- blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
81
- (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
82
- latent = source_face.normed_embedding.reshape((1, -1))
83
- latent = np.dot(latent, self.emap)
84
- latent /= np.linalg.norm(latent)
85
  pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
86
  pred = pred.transpose((0, 2, 3, 1))[0]
87
  pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
88
- batch_preds.append(pred)
89
- batch_aimgs.append(aimg)
90
- batch_ms.append(M)
91
- return batch_preds, batch_aimgs, batch_ms
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
  def batch_forward(self, img_list, target_f_list, source_f_list):
94
  num_samples = len(img_list)
@@ -96,8 +109,9 @@ class Inswapper():
96
 
97
  preds = []
98
  aimgs = []
99
- ms = []
100
- for i in tqdm(range(num_batches), desc="Swapping face by batch"):
 
101
  start_idx = i * self.batch_size
102
  end_idx = min((i + 1) * self.batch_size, num_samples)
103
 
@@ -105,86 +119,26 @@ class Inswapper():
105
  batch_target_f = target_f_list[start_idx:end_idx]
106
  batch_source_f = source_f_list[start_idx:end_idx]
107
 
108
- batch_pred, batch_aimg, batch_m = self.get(batch_img, batch_target_f, batch_source_f)
109
  preds.extend(batch_pred)
110
  aimgs.extend(batch_aimg)
111
- ms.extend(batch_m)
112
- return preds, aimgs, ms
113
-
114
-
115
- def laplacian_blending(A, B, m, num_levels=4):
116
- assert A.shape == B.shape
117
- assert B.shape == m.shape
118
- height = m.shape[0]
119
- width = m.shape[1]
120
- size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
121
- size = size_list[np.where(size_list > max(height, width))][0]
122
- GA = np.zeros((size, size, 3), dtype=np.float32)
123
- GA[:height, :width, :] = A
124
- GB = np.zeros((size, size, 3), dtype=np.float32)
125
- GB[:height, :width, :] = B
126
- GM = np.zeros((size, size, 3), dtype=np.float32)
127
- GM[:height, :width, :] = m
128
- gpA = [GA]
129
- gpB = [GB]
130
- gpM = [GM]
131
- for i in range(num_levels):
132
- GA = cv2.pyrDown(GA)
133
- GB = cv2.pyrDown(GB)
134
- GM = cv2.pyrDown(GM)
135
- gpA.append(np.float32(GA))
136
- gpB.append(np.float32(GB))
137
- gpM.append(np.float32(GM))
138
- lpA = [gpA[num_levels-1]]
139
- lpB = [gpB[num_levels-1]]
140
- gpMr = [gpM[num_levels-1]]
141
- for i in range(num_levels-1,0,-1):
142
- LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
143
- LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
144
- lpA.append(LA)
145
- lpB.append(LB)
146
- gpMr.append(gpM[i-1])
147
- LS = []
148
- for la,lb,gm in zip(lpA,lpB,gpMr):
149
- ls = la * gm + lb * (1.0 - gm)
150
- LS.append(ls)
151
- ls_ = LS[0]
152
- for i in range(1,num_levels):
153
- ls_ = cv2.pyrUp(ls_)
154
- ls_ = cv2.add(ls_, LS[i])
155
- ls_ = np.clip(ls_[:height, :width, :], 0, 255)
156
- return ls_
157
 
158
 
159
  def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
160
  IM = cv2.invertAffineTransform(M)
161
 
162
- img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
163
-
164
- top = int(crop_mask[0])
165
- bottom = int(crop_mask[1])
166
- if top + bottom < aimg.shape[1]:
167
- if top > 0: img_white[:top, :] = 0
168
- if bottom > 0: img_white[-bottom:, :] = 0
169
-
170
- left = int(crop_mask[2])
171
- right = int(crop_mask[3])
172
- if left + right < aimg.shape[0]:
173
- if left > 0: img_white[:, :left] = 0
174
- if right > 0: img_white[:, -right:] = 0
175
-
176
- bgr_fake = cv2.warpAffine(
177
- bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
178
- )
179
- img_white = cv2.warpAffine(
180
- img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
181
- )
182
  img_white[img_white > 20] = 255
183
  img_mask = img_white
184
  mask_h_inds, mask_w_inds = np.where(img_mask == 255)
185
- mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
186
- mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
187
- mask_size = int(np.sqrt(mask_h * mask_w))
188
 
189
  k = max(mask_size // 10, 10)
190
  img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
@@ -201,3 +155,11 @@ def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask
201
 
202
  fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
203
  return fake_merged.astype("uint8")
 
 
 
 
 
 
 
 
 
7
  from tqdm import tqdm
8
  from onnx import numpy_helper
9
  from skimage import transform as trans
10
+ import torchvision.transforms.functional as F
11
+ from utils import make_white_image, laplacian_blending
12
 
13
  arcface_dst = np.array(
14
  [[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366],
 
64
  self.input_size = tuple(input_shape[2:4][::-1])
65
 
66
  def forward(self, imgs, latents):
67
+ preds = []
68
  for img, latent in zip(imgs, latents):
69
  img = (img - self.input_mean) / self.input_std
70
  pred = self.session.run(self.output_names, {self.input_names[0]: img, self.input_names[1]: latent})[0]
71
+ preds.append(pred)
 
72
 
73
  def get(self, imgs, target_faces, source_faces):
74
+ imgs = list(imgs)
75
+
76
+ preds = [None] * len(imgs)
77
+ aimgs = [None] * len(imgs)
78
+ matrs = [None] * len(imgs)
79
+
80
+ for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)):
81
+ aimg, M, blob, latent = self.prepare_data(img, target_face, source_face)
82
+ aimgs[idx] = aimg
83
+ matrs[idx] = M
 
 
84
  pred = self.session.run(self.output_names, {self.input_names[0]: blob, self.input_names[1]: latent})[0]
85
  pred = pred.transpose((0, 2, 3, 1))[0]
86
  pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1]
87
+ preds[idx] = pred
88
+
89
+ return (preds, aimgs, matrs)
90
+
91
+ def prepare_data(self, img, target_face, source_face):
92
+ if isinstance(img, str):
93
+ img = cv2.imread(img)
94
+
95
+ aimg, M = norm_crop2(img, target_face.kps, self.input_size[0])
96
+
97
+ blob = cv2.dnn.blobFromImage(aimg, 1.0 / self.input_std, self.input_size,
98
+ (self.input_mean, self.input_mean, self.input_mean), swapRB=True)
99
+
100
+ latent = source_face.normed_embedding.reshape((1, -1))
101
+ latent = np.dot(latent, self.emap)
102
+ latent /= np.linalg.norm(latent)
103
+
104
+ return (aimg, M, blob, latent)
105
 
106
  def batch_forward(self, img_list, target_f_list, source_f_list):
107
  num_samples = len(img_list)
 
109
 
110
  preds = []
111
  aimgs = []
112
+ matrs = []
113
+
114
+ for i in tqdm(range(num_batches), desc="Swapping face"):
115
  start_idx = i * self.batch_size
116
  end_idx = min((i + 1) * self.batch_size, num_samples)
117
 
 
119
  batch_target_f = target_f_list[start_idx:end_idx]
120
  batch_source_f = source_f_list[start_idx:end_idx]
121
 
122
+ batch_pred, batch_aimg, batch_matr = self.get(batch_img, batch_target_f, batch_source_f)
123
  preds.extend(batch_pred)
124
  aimgs.extend(batch_aimg)
125
+ matrs.extend(batch_matr)
126
+
127
+ return (preds, aimgs, matrs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
 
129
 
130
  def paste_to_whole(bgr_fake, aimg, M, whole_img, laplacian_blend=True, crop_mask=(0,0,0,0)):
131
  IM = cv2.invertAffineTransform(M)
132
 
133
+ img_white = make_white_image(aimg.shape[:2], crop=crop_mask, white_value=255)
134
+
135
+ bgr_fake = cv2.warpAffine(bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0)
136
+ img_white = cv2.warpAffine(img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0)
137
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
  img_white[img_white > 20] = 255
139
  img_mask = img_white
140
  mask_h_inds, mask_w_inds = np.where(img_mask == 255)
141
+ mask_size = int(np.sqrt(np.ptp(mask_h_inds) * np.ptp(mask_w_inds)))
 
 
142
 
143
  k = max(mask_size // 10, 10)
144
  img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
 
155
 
156
  fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
157
  return fake_merged.astype("uint8")
158
+
159
+ def place_foreground_on_background(foreground, background, matrix):
160
+ matrix = cv2.invertAffineTransform(matrix)
161
+ mask = np.ones(foreground.shape, dtype="float32")
162
+ foreground = cv2.warpAffine(foreground, matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
163
+ mask = cv2.warpAffine(mask, matrix, (background.shape[1], background.shape[0]), borderValue=0.0)
164
+ composite_image = mask * foreground + (1 - mask) * background
165
+ return composite_image
nsfw_detector.py CHANGED
@@ -7,6 +7,7 @@ import torch
7
  import timm
8
  from tqdm import tqdm
9
 
 
10
  normalize_t = Normalize((0.4814, 0.4578, 0.4082), (0.2686, 0.2613, 0.2757))
11
 
12
  #nsfw classifier
@@ -28,7 +29,7 @@ class NSFWClassifier(nn.Module):
28
  x = nsfw_model.linear_probe(x)
29
  return x
30
 
31
- def is_nsfw(self, img_paths, threshold = 0.93):
32
  skip_step = 1
33
  total_len = len(img_paths)
34
  if total_len < 100: skip_step = 1
@@ -37,16 +38,19 @@ class NSFWClassifier(nn.Module):
37
  if total_len > 1000 and total_len < 10000: skip_step = 50
38
  if total_len > 10000: skip_step = 100
39
 
40
- for idx in tqdm(range(0, total_len, skip_step), total=total_len, desc="Checking for NSFW contents"):
41
- img = Image.open(img_paths[idx]).convert('RGB')
42
- img = img.resize((224, 224))
43
  img = np.array(img)/255
44
  img = T.ToTensor()(img).unsqueeze(0).float()
45
  if next(self.parameters()).is_cuda:
46
  img = img.cuda()
47
  with torch.no_grad():
48
  score = self.forward(img).sigmoid()[0].item()
49
- if score > threshold:return True
 
 
 
50
  return False
51
 
52
  def get_nsfw_detector(model_path='nsfwmodel_281.pth', device="cpu"):
 
7
  import timm
8
  from tqdm import tqdm
9
 
10
+ # https://github.com/Whiax/NSFW-Classifier/raw/main/nsfwmodel_281.pth
11
  normalize_t = Normalize((0.4814, 0.4578, 0.4082), (0.2686, 0.2613, 0.2757))
12
 
13
  #nsfw classifier
 
29
  x = nsfw_model.linear_probe(x)
30
  return x
31
 
32
+ def is_nsfw(self, img_paths, threshold = 0.98):
33
  skip_step = 1
34
  total_len = len(img_paths)
35
  if total_len < 100: skip_step = 1
 
38
  if total_len > 1000 and total_len < 10000: skip_step = 50
39
  if total_len > 10000: skip_step = 100
40
 
41
+ for idx in tqdm(range(0, total_len, skip_step), total=int(total_len // skip_step), desc="Checking for NSFW contents"):
42
+ _img = Image.open(img_paths[idx]).convert('RGB')
43
+ img = _img.resize((224, 224))
44
  img = np.array(img)/255
45
  img = T.ToTensor()(img).unsqueeze(0).float()
46
  if next(self.parameters()).is_cuda:
47
  img = img.cuda()
48
  with torch.no_grad():
49
  score = self.forward(img).sigmoid()[0].item()
50
+ if score > threshold:
51
+ print(f"Detected nsfw score:{score}")
52
+ _img.save("nsfw.jpg")
53
+ return True
54
  return False
55
 
56
  def get_nsfw_detector(model_path='nsfwmodel_281.pth', device="cpu"):
swapper.py DELETED
@@ -1,106 +0,0 @@
1
- import cv2
2
- import numpy as np
3
- from insightface.utils import face_align
4
- from face_parsing.swap import swap_regions
5
- from utils import add_logo_to_image
6
-
7
- swap_options_list = [
8
- "All face",
9
- "Age less than",
10
- "Age greater than",
11
- "All Male",
12
- "All Female",
13
- "Specific Face",
14
- ]
15
-
16
-
17
- def swap_face(whole_img, target_face, source_face, models):
18
- inswapper = models.get("swap")
19
- face_enhancer = models.get("enhance", None)
20
- face_parser = models.get("face_parser", None)
21
- fe_enable = models.get("enhance_sett", False)
22
-
23
- bgr_fake, M = inswapper.get(whole_img, target_face, source_face, paste_back=False)
24
- image_size = 128 if not fe_enable else 512
25
- aimg, _ = face_align.norm_crop2(whole_img, target_face.kps, image_size=image_size)
26
-
27
- if face_parser is not None:
28
- fp_enable, includes, smooth_mask, blur_amount = models.get("face_parser_sett")
29
- if fp_enable:
30
- bgr_fake = swap_regions(
31
- bgr_fake, aimg, face_parser, smooth_mask, includes=includes, blur=blur_amount
32
- )
33
-
34
- if fe_enable:
35
- _, bgr_fake, _ = face_enhancer.enhance(
36
- bgr_fake, paste_back=True, has_aligned=True
37
- )
38
- bgr_fake = bgr_fake[0]
39
- M /= 0.25
40
-
41
- IM = cv2.invertAffineTransform(M)
42
-
43
- img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32)
44
- bgr_fake = cv2.warpAffine(
45
- bgr_fake, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
46
- )
47
- img_white = cv2.warpAffine(
48
- img_white, IM, (whole_img.shape[1], whole_img.shape[0]), borderValue=0.0
49
- )
50
- img_white[img_white > 20] = 255
51
- img_mask = img_white
52
- mask_h_inds, mask_w_inds = np.where(img_mask == 255)
53
- mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
54
- mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
55
- mask_size = int(np.sqrt(mask_h * mask_w))
56
-
57
- k = max(mask_size // 10, 10)
58
- img_mask = cv2.erode(img_mask, np.ones((k, k), np.uint8), iterations=1)
59
-
60
- k = max(mask_size // 20, 5)
61
- kernel_size = (k, k)
62
- blur_size = tuple(2 * i + 1 for i in kernel_size)
63
- img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) / 255
64
-
65
- img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1])
66
- fake_merged = img_mask * bgr_fake + (1 - img_mask) * whole_img.astype(np.float32)
67
- fake_merged = add_logo_to_image(fake_merged.astype("uint8"))
68
- return fake_merged
69
-
70
-
71
- def swap_face_with_condition(
72
- whole_img, target_faces, source_face, condition, age, models
73
- ):
74
- swapped = whole_img.copy()
75
-
76
- for target_face in target_faces:
77
- if condition == "All face":
78
- swapped = swap_face(swapped, target_face, source_face, models)
79
- elif condition == "Age less than" and target_face["age"] < age:
80
- swapped = swap_face(swapped, target_face, source_face, models)
81
- elif condition == "Age greater than" and target_face["age"] > age:
82
- swapped = swap_face(swapped, target_face, source_face, models)
83
- elif condition == "All Male" and target_face["gender"] == 1:
84
- swapped = swap_face(swapped, target_face, source_face, models)
85
- elif condition == "All Female" and target_face["gender"] == 0:
86
- swapped = swap_face(swapped, target_face, source_face, models)
87
-
88
- return swapped
89
-
90
-
91
- def swap_specific(source_specifics, target_faces, whole_img, models, threshold=0.6):
92
- swapped = whole_img.copy()
93
-
94
- for source_face, specific_face in source_specifics:
95
- specific_embed = specific_face["embedding"]
96
- specific_embed /= np.linalg.norm(specific_embed)
97
-
98
- for target_face in target_faces:
99
- target_embed = target_face["embedding"]
100
- target_embed /= np.linalg.norm(target_embed)
101
- cosine_distance = 1 - np.dot(specific_embed, target_embed)
102
- if cosine_distance > threshold:
103
- continue
104
- swapped = swap_face(swapped, target_face, source_face, models)
105
-
106
- return swapped
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils.py CHANGED
@@ -2,13 +2,64 @@ import os
2
  import cv2
3
  import time
4
  import glob
 
5
  import shutil
6
  import platform
7
  import datetime
8
  import subprocess
 
9
  from threading import Thread
10
  from moviepy.editor import VideoFileClip, ImageSequenceClip
11
  from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
 
14
  def trim_video(video_path, output_path, start_frame, stop_frame):
@@ -23,9 +74,11 @@ def trim_video(video_path, output_path, start_frame, stop_frame):
23
  start_time = start_frame / fps
24
  duration = (stop_frame - start_frame) / fps
25
 
 
 
26
  trimmed_video = video.subclip(start_time, start_time + duration)
27
  trimmed_video.write_videofile(
28
- trimmed_video_file_path, codec="libx264", audio_codec="aac"
29
  )
30
  trimmed_video.close()
31
  video.close()
@@ -91,9 +144,6 @@ class ProcessBar:
91
  return info_text
92
 
93
 
94
- logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)
95
-
96
-
97
  def add_logo_to_image(img, logo=logo_image):
98
  logo_size = int(img.shape[1] * 0.1)
99
  logo = cv2.resize(logo, (logo_size, logo_size))
@@ -111,6 +161,7 @@ def add_logo_to_image(img, logo=logo_image):
111
  ]
112
  return img
113
 
 
114
  def split_list_by_lengths(data, length_list):
115
  split_data = []
116
  start_idx = 0
@@ -121,6 +172,7 @@ def split_list_by_lengths(data, length_list):
121
  start_idx = end_idx
122
  return split_data
123
 
 
124
  def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
125
  video_clip = VideoFileClip(ref_video_path)
126
  fps = video_clip.fps
@@ -132,12 +184,15 @@ def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name
132
  if audio_clip is not None:
133
  edited_video_clip = edited_video_clip.set_audio(audio_clip)
134
 
 
 
135
  edited_video_clip.set_duration(duration).write_videofile(
136
- output_file_name, codec="libx264"
137
  )
138
  edited_video_clip.close()
139
  video_clip.close()
140
 
 
141
  def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
142
  # Extract the coordinates of the bbox
143
  x1, y1, x2, y2 = bbox
@@ -167,3 +222,72 @@ def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_h
167
  # Return the scaled bbox coordinates
168
  scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
169
  return scaled_bbox
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import cv2
3
  import time
4
  import glob
5
+ import torch
6
  import shutil
7
  import platform
8
  import datetime
9
  import subprocess
10
+ import numpy as np
11
  from threading import Thread
12
  from moviepy.editor import VideoFileClip, ImageSequenceClip
13
  from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
14
+ from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion
15
+
16
+
17
+ logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)
18
+
19
+
20
+ quality_types = ["poor", "low", "medium", "high", "best"]
21
+
22
+
23
+ bitrate_quality_by_resolution = {
24
+ 240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"},
25
+ 360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"},
26
+ 480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"},
27
+ 720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"},
28
+ 1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"},
29
+ 1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"},
30
+ 2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"}
31
+ }
32
+
33
+
34
+ crf_quality_by_resolution = {
35
+ 240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
36
+ 360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
37
+ 480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
38
+ 720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
39
+ 1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
40
+ 1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
41
+ 2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
42
+ }
43
+
44
+
45
+ def get_bitrate_for_resolution(resolution, quality):
46
+ available_resolutions = list(bitrate_quality_by_resolution.keys())
47
+ closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
48
+ return bitrate_quality_by_resolution[closest_resolution][quality]
49
+
50
+
51
+ def get_crf_for_resolution(resolution, quality):
52
+ available_resolutions = list(crf_quality_by_resolution.keys())
53
+ closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
54
+ return crf_quality_by_resolution[closest_resolution][quality]
55
+
56
+
57
+ def get_video_bitrate(video_file):
58
+ ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries',
59
+ 'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file]
60
+ result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE)
61
+ kbps = max(int(result.stdout) // 1000, 10)
62
+ return str(kbps) + 'k'
63
 
64
 
65
  def trim_video(video_path, output_path, start_frame, stop_frame):
 
74
  start_time = start_frame / fps
75
  duration = (stop_frame - start_frame) / fps
76
 
77
+ bitrate = get_bitrate_for_resolution(min(*video.size), "high")
78
+
79
  trimmed_video = video.subclip(start_time, start_time + duration)
80
  trimmed_video.write_videofile(
81
+ trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate,
82
  )
83
  trimmed_video.close()
84
  video.close()
 
144
  return info_text
145
 
146
 
 
 
 
147
  def add_logo_to_image(img, logo=logo_image):
148
  logo_size = int(img.shape[1] * 0.1)
149
  logo = cv2.resize(logo, (logo_size, logo_size))
 
161
  ]
162
  return img
163
 
164
+
165
  def split_list_by_lengths(data, length_list):
166
  split_data = []
167
  start_idx = 0
 
172
  start_idx = end_idx
173
  return split_data
174
 
175
+
176
  def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
177
  video_clip = VideoFileClip(ref_video_path)
178
  fps = video_clip.fps
 
184
  if audio_clip is not None:
185
  edited_video_clip = edited_video_clip.set_audio(audio_clip)
186
 
187
+ bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high")
188
+
189
  edited_video_clip.set_duration(duration).write_videofile(
190
+ output_file_name, codec="libx264", bitrate=bitrate,
191
  )
192
  edited_video_clip.close()
193
  video_clip.close()
194
 
195
+
196
  def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
197
  # Extract the coordinates of the bbox
198
  x1, y1, x2, y2 = bbox
 
222
  # Return the scaled bbox coordinates
223
  scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
224
  return scaled_bbox
225
+
226
+
227
+ def laplacian_blending(A, B, m, num_levels=4):
228
+ assert A.shape == B.shape
229
+ assert B.shape == m.shape
230
+ height = m.shape[0]
231
+ width = m.shape[1]
232
+ size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
233
+ size = size_list[np.where(size_list > max(height, width))][0]
234
+ GA = np.zeros((size, size, 3), dtype=np.float32)
235
+ GA[:height, :width, :] = A
236
+ GB = np.zeros((size, size, 3), dtype=np.float32)
237
+ GB[:height, :width, :] = B
238
+ GM = np.zeros((size, size, 3), dtype=np.float32)
239
+ GM[:height, :width, :] = m
240
+ gpA = [GA]
241
+ gpB = [GB]
242
+ gpM = [GM]
243
+ for i in range(num_levels):
244
+ GA = cv2.pyrDown(GA)
245
+ GB = cv2.pyrDown(GB)
246
+ GM = cv2.pyrDown(GM)
247
+ gpA.append(np.float32(GA))
248
+ gpB.append(np.float32(GB))
249
+ gpM.append(np.float32(GM))
250
+ lpA = [gpA[num_levels-1]]
251
+ lpB = [gpB[num_levels-1]]
252
+ gpMr = [gpM[num_levels-1]]
253
+ for i in range(num_levels-1,0,-1):
254
+ LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
255
+ LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
256
+ lpA.append(LA)
257
+ lpB.append(LB)
258
+ gpMr.append(gpM[i-1])
259
+ LS = []
260
+ for la,lb,gm in zip(lpA,lpB,gpMr):
261
+ ls = la * gm + lb * (1.0 - gm)
262
+ LS.append(ls)
263
+ ls_ = LS[0]
264
+ for i in range(1,num_levels):
265
+ ls_ = cv2.pyrUp(ls_)
266
+ ls_ = cv2.add(ls_, LS[i])
267
+ ls_ = np.clip(ls_[:height, :width, :], 0, 255)
268
+ return ls_
269
+
270
+
271
+ def make_white_image(shape, crop=None, white_value=255):
272
+ img_white = np.full((shape[0], shape[1]), white_value, dtype=np.float32)
273
+ if crop is not None:
274
+ top = int(crop[0])
275
+ bottom = int(crop[1])
276
+ if top + bottom < shape[1]:
277
+ if top > 0: img_white[:top, :] = 0
278
+ if bottom > 0: img_white[-bottom:, :] = 0
279
+
280
+ left = int(crop[2])
281
+ right = int(crop[3])
282
+ if left + right < shape[0]:
283
+ if left > 0: img_white[:, :left] = 0
284
+ if right > 0: img_white[:, -right:] = 0
285
+
286
+ return img_white
287
+
288
+
289
+ def remove_hair(img, model=None):
290
+ if model is None:
291
+ path = "./assets/pretrained_models/79999_iter.pth"
292
+ model = init_parser(path, mode="cuda" if torch.cuda.is_available() else "cpu")
293
+