Gayatri kancharla commited on
Commit
cedd8d8
·
verified ·
1 Parent(s): b9ecfb4

Delete voice_processor.py

Browse files
Files changed (1) hide show
  1. voice_processor.py +0 -58
voice_processor.py DELETED
@@ -1,58 +0,0 @@
1
- import logging
2
- logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
3
- logger = logging.getLogger(__name__)
4
-
5
- try:
6
- from transformers import pipeline
7
- import librosa
8
- import numpy as np
9
- except ImportError as e:
10
- logger.error(f"Failed to import required libraries: {str(e)}. Please run 'pip install -r requirements.txt' in the Space terminal.")
11
- raise
12
-
13
- class VoiceProcessor:
14
- def __init__(self, cipher):
15
- self.cipher = cipher
16
- try:
17
- # Initialize Hugging Face speech recognition pipeline
18
- self.asr_pipeline = pipeline(
19
- "automatic-speech-recognition",
20
- model="openai/whisper-tiny",
21
- device=-1 # CPU for Hugging Face Spaces
22
- )
23
- logger.info("Initialized Whisper speech recognition pipeline")
24
- except Exception as e:
25
- logger.error(f"Error initializing ASR pipeline: {str(e)}. Ensure transformers and torch are installed.")
26
- raise
27
-
28
- def analyze_voice(self, audio_path):
29
- try:
30
- # Load and preprocess audio
31
- audio, sr = librosa.load(audio_path, sr=16000)
32
-
33
- # Perform speech recognition
34
- transcription = self.asr_pipeline(audio)["text"]
35
-
36
- # Placeholder health analysis (simulated)
37
- health_indicators = self._simulate_health_analysis(audio, sr)
38
-
39
- # Encrypt sensitive data
40
- encrypted_transcription = self.cipher.encrypt(transcription.encode()).decode()
41
-
42
- return {
43
- "transcription": transcription,
44
- "encrypted_transcription": encrypted_transcription,
45
- "health_indicators": health_indicators,
46
- "disclaimer": "This is not a medical diagnosis. Consult a doctor for professional advice."
47
- }
48
- except Exception as e:
49
- logger.error(f"Error processing voice: {str(e)}")
50
- return {"error": str(e)}
51
-
52
- def _simulate_health_analysis(self, audio, sr):
53
- # Placeholder: Simulate health indicator analysis
54
- energy = np.mean(librosa.feature.rms(y=audio).flatten())
55
- return {
56
- "respiratory": "Normal" if energy > 0.01 else "Possible issue detected",
57
- "mental_health": "Stable" if len(audio) / sr > 5 else "Possible stress detected"
58
- }