|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from torchvision import datasets, transforms |
|
from models import NetConv |
|
|
|
|
|
|
|
batch_size = 64 |
|
test_batch_size = 1000 |
|
epochs = 10 |
|
lr = 0.01 |
|
momentum = 0.5 |
|
seed = 1 |
|
log_interval = 10 |
|
|
|
torch.manual_seed(seed) |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
kwargs = {'num_workers': 1, 'pin_memory': True} if torch.cuda.is_available() else {} |
|
|
|
|
|
train_dataset = datasets.MNIST(root='./data/', train=True, transform=transforms.ToTensor(), download=True) |
|
test_dataset = datasets.MNIST(root='./data/', train=False, transform=transforms.ToTensor()) |
|
|
|
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, **kwargs) |
|
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=test_batch_size, shuffle=False, **kwargs) |
|
|
|
model = NetConv().to(device) |
|
optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum) |
|
|
|
|
|
for epoch in range(1, epochs + 1): |
|
model.train() |
|
for batch_idx, (data, target) in enumerate(train_loader): |
|
data, target = data.to(device), target.to(device) |
|
optimizer.zero_grad() |
|
output = model(data) |
|
loss = F.nll_loss(output, target) |
|
loss.backward() |
|
optimizer.step() |
|
if batch_idx % log_interval == 0: |
|
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( |
|
epoch, batch_idx * len(data), len(train_loader.dataset), |
|
100. * batch_idx / len(train_loader), loss.item())) |
|
|
|
torch.save(model,'mnist_conv.pth') |