Shanks0465 commited on
Commit
a35afc1
1 Parent(s): bf7b9bf

Updated Description

Browse files
Files changed (1) hide show
  1. app.py +3 -2
app.py CHANGED
@@ -37,8 +37,9 @@ def get_ner(sentence):
37
 
38
  iface = gr.Interface(get_ner,
39
  gr.Textbox(placeholder="Enter sentence here..."),
40
- ["highlight"], examples=['लगातार हमलावर हो रहे शिवपाल और राजभर को सपा की दो टूक, चिट्ठी जारी कर कहा- जहां जाना चाहें जा सकते हैं', 'ಶರಣ್ ರ ನೀವು ನೋಡಲೇಬೇಕಾದ ಟಾಪ್ 5 ಕಾಮಿಡಿ ಚಲನಚಿತ್ರಗಳು'], title='IndicNER',
41
- article='IndicNER is a model trained to complete the task of identifying named entities from sentences in Indian languages. Our model is specifically fine-tuned to the 11 Indian languages mentioned above over millions of sentences. The model is then benchmarked over a human annotated testset and multiple other publicly available Indian NER datasets. The 11 languages covered by IndicNER are: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu.'
 
42
  )
43
 
44
  iface.launch(enable_queue=True)
 
37
 
38
  iface = gr.Interface(get_ner,
39
  gr.Textbox(placeholder="Enter sentence here..."),
40
+ ["highlight"], description='The 11 languages covered by IndicNER are: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu.',
41
+ examples=['लगातार हमलावर हो रहे शिवपाल और राजभर को सपा की दो टूक, चिट्ठी जारी कर कहा- जहां जाना चाहें जा सकते हैं', 'ಶರಣ್ ನೀವು ನೋಡಲೇಬೇಕಾದ ಟಾಪ್ 5 ಕಾಮಿಡಿ ಚಲನಚಿತ್ರಗಳು'], title='IndicNER',
42
+ article='IndicNER is a model trained to complete the task of identifying named entities from sentences in Indian languages. Our model is specifically fine-tuned to the 11 Indian languages mentioned above over millions of sentences. The model is then benchmarked over a human annotated testset and multiple other publicly available Indian NER datasets.'
43
  )
44
 
45
  iface.launch(enable_queue=True)