genai / generator /llm_calls.py
gauravprasadgp's picture
initial commit
d132e19
raw
history blame
975 Bytes
from llama_index.legacy.embeddings import HuggingFaceEmbedding
from llama_index.legacy.llms import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import (
messages_to_prompt,
completion_to_prompt,
)
llm = LlamaCPP(
model_url="https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML/resolve/main/llama-2-13b-chat.ggmlv3.q4_0"
".bin",
temperature=0.1,
max_new_tokens=256,
context_window=3900,
generate_kwargs={},
model_kwargs={"n_gpu_layers": 1},
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
verbose=True,
)
def get_embed_model():
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
return embed_model
async def get_answer(query, context):
prompt = f"""Given the context below answer the question.
Context: {context}
Question: {query}
Answer:
"""
return await llm.acomplete(prompt=prompt)