Spaces:
Running
Running
Johnny
updated config and ultils to include sentence_transformer for score, re-added gemma for summarization
4f034fb
import fitz # PyMuPDF for PDF processing | |
import requests | |
import json | |
import re | |
from io import BytesIO | |
import supabase | |
from config import SUPABASE_URL, SUPABASE_KEY, HF_API_TOKEN, HF_HEADERS, supabase, HF_MODELS, query, embedding_model | |
from sentence_transformers import SentenceTransformer, util | |
# These functions will be called in the app.py file | |
def evaluate_resumes(uploaded_files, job_description): | |
"""Evaluates uploaded resumes and returns shortlisted candidates.""" | |
candidates = [] | |
for pdf_file in uploaded_files: | |
resume_text = parse_resume(pdf_file) | |
score = score_candidate(resume_text, job_description) | |
email = extract_email(resume_text) | |
# Generate a summary of the resume | |
summary = summarize_resume(resume_text) | |
candidates.append({ | |
"name": pdf_file.name, | |
"resume": resume_text, | |
"score": score, | |
"email": email, | |
"summary": summary | |
}) | |
# Store all details including summary in Supabase | |
store_in_supabase(resume_text, score, pdf_file.name, email, summary) | |
return sorted(candidates, key=lambda x: x["score"], reverse=True)[:5] # Return top 5 candidates | |
def parse_resume(pdf_file): | |
"""Extracts text from a resume PDF.""" | |
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") | |
text = "\n".join([page.get_text("text") for page in doc]) | |
return text | |
def extract_email(resume_text): | |
"""Extracts an email address from resume text.""" | |
match = re.search(r"[\w\.-]+@[\w\.-]+", resume_text) | |
return match.group(0) if match else None | |
def score_candidate(resume_text, job_description): | |
""" | |
Scores the candidate's resume based on the job description using sentence-transformers. | |
:param resume_text: The extracted resume text. | |
:param job_description: The job description for comparison. | |
:return: A numerical score (cosine similarity between 0 and 1). | |
""" | |
try: | |
# Generate embeddings | |
resume_embedding = embedding_model.encode(resume_text, convert_to_tensor=True) | |
job_embedding = embedding_model.encode(job_description, convert_to_tensor=True) | |
# Compute cosine similarity | |
score = util.pytorch_cos_sim(resume_embedding, job_embedding).item() | |
return round(score, 4) # Return similarity score rounded to 4 decimal places | |
except Exception as e: | |
print(f"Error computing similarity score: {e}") | |
return 0 # Return 0 if scoring fails | |
def summarize_resume(resume_text): | |
""" | |
Summarizes a resume using the Google gemma model. | |
:param resume_text: The resume text to summarize. | |
:return: A summarized version of the resume. | |
""" | |
payload = {"inputs": f"Summarize this resume: {resume_text}"} | |
response = query(payload, model="gemma") # Use gemma for summarization | |
if response is None: | |
print("Error: API response is None") | |
return "Summary could not be generated." | |
# If the response is a list, extract the first element | |
if isinstance(response, list) and len(response) > 0: | |
response = response[0] | |
try: | |
if isinstance(response, dict) and "generated_text" in response: | |
return response["generated_text"] | |
else: | |
print("Unexpected API response format:", response) | |
return "Summary could not be generated." | |
except (TypeError, ValueError) as e: | |
print(f"Error parsing summary: {e}") | |
return "Summary could not be generated." | |
def store_in_supabase(resume_text, score, candidate_name, email, summary): | |
""" | |
Stores resume data in Supabase. | |
:param resume_text: The extracted resume text. | |
:param score: The candidate's score (must be a valid number). | |
:param candidate_name: The candidate's name. | |
:param email: Candidate's email address. | |
:param summary: A summarized version of the resume. | |
""" | |
if score is None: | |
score = 0 # Ensure score is never NULL | |
data = { | |
"name": candidate_name, | |
"resume": resume_text, | |
"score": score, | |
"email": email, | |
"summary": summary | |
} | |
response = supabase.table("candidates").insert(data).execute() | |
return response | |
# Test with 10 resumes, if they will be shortlisted | |
def generate_pdf_report(shortlisted_candidates): | |
"""Generates a PDF summary of shortlisted candidates.""" | |
pdf = BytesIO() | |
doc = fitz.open() | |
for candidate in shortlisted_candidates: | |
page = doc.new_page() | |
# Use the stored summary, or provide a fallback | |
summary = candidate.get("summary", "No summary available") | |
page.insert_text( | |
(50, 50), | |
f"Candidate: {candidate['name']}\n" | |
f"Email: {candidate['email']}\n" | |
f"Score: {candidate['score']}\n" | |
f"Summary: {summary}" | |
) | |
doc.save(pdf) | |
pdf.seek(0) | |
return pdf |