gaur3009 commited on
Commit
5cb5057
·
verified ·
1 Parent(s): 9a8c17e

Create safety_checker.py

Browse files
Files changed (1) hide show
  1. safety_checker.py +123 -0
safety_checker.py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
5
+
6
+
7
+ def cosine_distance(image_embeds, text_embeds):
8
+ normalized_image_embeds = nn.functional.normalize(image_embeds)
9
+ normalized_text_embeds = nn.functional.normalize(text_embeds)
10
+ return torch.mm(normalized_image_embeds, normalized_text_embeds.t())
11
+
12
+
13
+ class StableDiffusionSafetyChecker(PreTrainedModel):
14
+ config_class = CLIPConfig
15
+
16
+ _no_split_modules = ["CLIPEncoderLayer"]
17
+
18
+ def __init__(self, config: CLIPConfig):
19
+ super().__init__(config)
20
+
21
+ self.vision_model = CLIPVisionModel(config.vision_config)
22
+ self.visual_projection = nn.Linear(
23
+ config.vision_config.hidden_size, config.projection_dim, bias=False
24
+ )
25
+
26
+ self.concept_embeds = nn.Parameter(
27
+ torch.ones(17, config.projection_dim), requires_grad=False
28
+ )
29
+ self.special_care_embeds = nn.Parameter(
30
+ torch.ones(3, config.projection_dim), requires_grad=False
31
+ )
32
+
33
+ self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False)
34
+ self.special_care_embeds_weights = nn.Parameter(
35
+ torch.ones(3), requires_grad=False
36
+ )
37
+
38
+ @torch.no_grad()
39
+ def forward(self, clip_input, images):
40
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
41
+ image_embeds = self.visual_projection(pooled_output)
42
+
43
+ # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
44
+ special_cos_dist = (
45
+ cosine_distance(image_embeds, self.special_care_embeds)
46
+ .cpu()
47
+ .float()
48
+ .numpy()
49
+ )
50
+ cos_dist = (
51
+ cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy()
52
+ )
53
+
54
+ result = []
55
+ batch_size = image_embeds.shape[0]
56
+ for i in range(batch_size):
57
+ result_img = {
58
+ "special_scores": {},
59
+ "special_care": [],
60
+ "concept_scores": {},
61
+ "bad_concepts": [],
62
+ }
63
+
64
+ # increase this value to create a stronger `nfsw` filter
65
+ # at the cost of increasing the possibility of filtering benign images
66
+ adjustment = 0.0
67
+
68
+ for concept_idx in range(len(special_cos_dist[0])):
69
+ concept_cos = special_cos_dist[i][concept_idx]
70
+ concept_threshold = self.special_care_embeds_weights[concept_idx].item()
71
+ result_img["special_scores"][concept_idx] = round(
72
+ concept_cos - concept_threshold + adjustment, 3
73
+ )
74
+ if result_img["special_scores"][concept_idx] > 0:
75
+ result_img["special_care"].append(
76
+ {concept_idx, result_img["special_scores"][concept_idx]}
77
+ )
78
+ adjustment = 0.01
79
+
80
+ for concept_idx in range(len(cos_dist[0])):
81
+ concept_cos = cos_dist[i][concept_idx]
82
+ concept_threshold = self.concept_embeds_weights[concept_idx].item()
83
+ result_img["concept_scores"][concept_idx] = round(
84
+ concept_cos - concept_threshold + adjustment, 3
85
+ )
86
+ if result_img["concept_scores"][concept_idx] > 0:
87
+ result_img["bad_concepts"].append(concept_idx)
88
+
89
+ result.append(result_img)
90
+
91
+ has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result]
92
+
93
+ return has_nsfw_concepts
94
+
95
+ @torch.no_grad()
96
+ def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor):
97
+ pooled_output = self.vision_model(clip_input)[1] # pooled_output
98
+ image_embeds = self.visual_projection(pooled_output)
99
+
100
+ special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds)
101
+ cos_dist = cosine_distance(image_embeds, self.concept_embeds)
102
+
103
+ # increase this value to create a stronger `nsfw` filter
104
+ # at the cost of increasing the possibility of filtering benign images
105
+ adjustment = 0.0
106
+
107
+ special_scores = (
108
+ special_cos_dist - self.special_care_embeds_weights + adjustment
109
+ )
110
+ # special_scores = special_scores.round(decimals=3)
111
+ special_care = torch.any(special_scores > 0, dim=1)
112
+ special_adjustment = special_care * 0.01
113
+ special_adjustment = special_adjustment.unsqueeze(1).expand(
114
+ -1, cos_dist.shape[1]
115
+ )
116
+
117
+ concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment
118
+ # concept_scores = concept_scores.round(decimals=3)
119
+ has_nsfw_concepts = torch.any(concept_scores > 0, dim=1)
120
+
121
+ images[has_nsfw_concepts] = 0.0 # black image
122
+
123
+ return images, has_nsfw_concepts