NewModel / app.py
gaur3009's picture
Update app.py
f5c0513 verified
import numpy as np
import random
import torch
import gradio as gr
from diffusers import DiffusionPipeline
from PIL import Image
import io
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch.cuda.max_memory_allocated(device=device)
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
pipe.enable_xformers_memory_efficient_attention()
pipe = pipe.to(device)
else:
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def infer(prompt_part1, color, dress_type, design, prompt_part5, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
prompt = f"{prompt_part1} {color} colored plain {dress_type} with {design} design, {prompt_part5}"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
try:
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0]
print("Image generated successfully.") # Debug: Confirm image generation
return image
except Exception as e:
print(f"Error generating image: {e}")
return None
examples = [
["red", "t-shirt", "yellow stripes"],
["blue", "hoodie", "minimalist"],
["red", "sweatshirt", "geometric design"],
]
css = """
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
power_device = "GPU" if torch.cuda.is_available() else "CPU"
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# Text-to-Image Gradio Template
Currently running on {power_device}.
""")
with gr.Row():
prompt_part1 = gr.Textbox(value="a single", label="Prompt Part 1", show_label=False, interactive=False, container=False, elem_id="prompt_part1", visible=False)
prompt_part2 = gr.Textbox(label="color", show_label=False, max_lines=1, placeholder="color (e.g., color category)", container=False)
prompt_part3 = gr.Textbox(label="dress_type", show_label=False, max_lines=1, placeholder="dress_type (e.g., t-shirt, sweatshirt, shirt, hoodie)", container=False)
prompt_part4 = gr.Textbox(label="design", show_label=False, max_lines=1, placeholder="design", container=False)
prompt_part5 = gr.Textbox(value="hanging on the plain grey wall", label="Prompt Part 5", show_label=False, interactive=False, container=False, elem_id="prompt_part5", visible=False)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative prompt", max_lines=1, placeholder="Enter a negative prompt", visible=False)
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=0.0)
num_inference_steps = gr.Slider(label="Number of inference steps", minimum=1, maximum=12, step=1, value=2)
gr.Examples(examples=examples, inputs=[prompt_part2, prompt_part3, prompt_part4])
def run_infer():
output_image = infer(
prompt_part1.value,
prompt_part2.value,
prompt_part3.value,
prompt_part4.value,
prompt_part5.value,
negative_prompt.value,
seed.value,
randomize_seed.value,
width.value,
height.value,
guidance_scale.value,
num_inference_steps.value
)
return output_image
run_button.click(fn=run_infer, outputs=result)
demo.queue().launch()