KingNish commited on
Commit
60c673a
Β·
verified Β·
1 Parent(s): 9b50823

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -16
app.py CHANGED
@@ -5,9 +5,6 @@ import spaces
5
  import gradio as gr
6
  import numpy as np
7
  import torch
8
- import tempfile
9
- import os
10
- import uuid
11
  from PIL import Image
12
  from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
13
  from huggingface_hub import hf_hub_download, InferenceClient
@@ -32,11 +29,6 @@ To optimize image results:
32
  - **Increase the number of steps** for enhanced edits.
33
  """
34
 
35
- def save_image(img):
36
- unique_name = str(uuid.uuid4()) + ".png"
37
- img.save(unique_name)
38
- return unique_name
39
-
40
  def set_timesteps_patched(self, num_inference_steps: int, device = None):
41
  self.num_inference_steps = num_inference_steps
42
 
@@ -58,7 +50,7 @@ pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file
58
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
59
  pipe_edit.to("cuda")
60
 
61
- client1 = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
62
  system_instructions1 = "<s>[SYSTEM] Act as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.[USER]"
63
 
64
  def promptifier(prompt):
@@ -99,9 +91,8 @@ def king(type ,
99
  num_inference_steps=steps,
100
  image=output_image,
101
  generator=generator,
102
- ).images
103
- image_paths = [save_image(img) for img in refine][0]
104
- return seed, image_paths
105
  else :
106
  if randomize_seed:
107
  seed = random.randint(0, 999999)
@@ -117,7 +108,7 @@ def king(type ,
117
  num_inference_steps = int(steps/2.5),
118
  width = width, height = height,
119
  generator = generator,
120
- ).images
121
  else:
122
  image = pipe_fast( prompt = instruction,
123
  negative_prompt=negative_prompt,
@@ -132,9 +123,8 @@ def king(type ,
132
  guidance_scale = 7.5,
133
  num_inference_steps= steps,
134
  image=image, generator=generator,
135
- ).images
136
- image_paths = [save_image(img) for img in refine][0]
137
- return seed, image_paths
138
 
139
  client = InferenceClient()
140
  # Prompt classifier
 
5
  import gradio as gr
6
  import numpy as np
7
  import torch
 
 
 
8
  from PIL import Image
9
  from diffusers import StableDiffusionXLImg2ImgPipeline, StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, DPMSolverMultistepScheduler
10
  from huggingface_hub import hf_hub_download, InferenceClient
 
29
  - **Increase the number of steps** for enhanced edits.
30
  """
31
 
 
 
 
 
 
32
  def set_timesteps_patched(self, num_inference_steps: int, device = None):
33
  self.num_inference_steps = num_inference_steps
34
 
 
50
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
51
  pipe_edit.to("cuda")
52
 
53
+ client1 = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
54
  system_instructions1 = "<s>[SYSTEM] Act as Image Prompt Generation expert, Your task is to modify prompt by USER to more better prompt for Image Generation in Stable Diffusion XL. \n Modify the user's prompt to generate a high-quality image by incorporating essential keywords and styles according to prompt if none style is mentioned than assume realistic. The optimized prompt may include keywords according to prompt for resolution (4K, HD, 16:9 aspect ratio, , etc.), image quality (cute, masterpiece, high-quality, vivid colors, intricate details, etc.), and desired art styles (realistic, anime, 3D, logo, futuristic, fantasy, etc.). Ensure the prompt is concise, yet comprehensive and choose keywords wisely, to generate an exceptional image that meets the user's expectations. \n Your task is to reply with final optimized prompt only. If you get big prompt make it concise. and Apply all keyword at last of prompt. Reply with optimized prompt only.[USER]"
55
 
56
  def promptifier(prompt):
 
91
  num_inference_steps=steps,
92
  image=output_image,
93
  generator=generator,
94
+ ).images[0]
95
+ return seed, refine
 
96
  else :
97
  if randomize_seed:
98
  seed = random.randint(0, 999999)
 
108
  num_inference_steps = int(steps/2.5),
109
  width = width, height = height,
110
  generator = generator,
111
+ ).images[0]
112
  else:
113
  image = pipe_fast( prompt = instruction,
114
  negative_prompt=negative_prompt,
 
123
  guidance_scale = 7.5,
124
  num_inference_steps= steps,
125
  image=image, generator=generator,
126
+ ).images[0]
127
+ return seed, refine
 
128
 
129
  client = InferenceClient()
130
  # Prompt classifier