Spaces:
Runtime error
Runtime error
from detectron2.config import LazyCall as L | |
from detectron2.layers import ShapeSpec | |
from detectron2.modeling.meta_arch import GeneralizedRCNN | |
from detectron2.modeling.anchor_generator import DefaultAnchorGenerator | |
from detectron2.modeling.backbone import BasicStem, BottleneckBlock, ResNet | |
from detectron2.modeling.box_regression import Box2BoxTransform | |
from detectron2.modeling.matcher import Matcher | |
from detectron2.modeling.poolers import ROIPooler | |
from detectron2.modeling.proposal_generator import RPN, StandardRPNHead | |
from detectron2.modeling.roi_heads import ( | |
FastRCNNOutputLayers, | |
MaskRCNNConvUpsampleHead, | |
Res5ROIHeads, | |
) | |
from ..data.constants import constants | |
model = L(GeneralizedRCNN)( | |
backbone=L(ResNet)( | |
stem=L(BasicStem)(in_channels=3, out_channels=64, norm="FrozenBN"), | |
stages=L(ResNet.make_default_stages)( | |
depth=50, | |
stride_in_1x1=True, | |
norm="FrozenBN", | |
), | |
out_features=["res4"], | |
), | |
proposal_generator=L(RPN)( | |
in_features=["res4"], | |
head=L(StandardRPNHead)(in_channels=1024, num_anchors=15), | |
anchor_generator=L(DefaultAnchorGenerator)( | |
sizes=[[32, 64, 128, 256, 512]], | |
aspect_ratios=[0.5, 1.0, 2.0], | |
strides=[16], | |
offset=0.0, | |
), | |
anchor_matcher=L(Matcher)( | |
thresholds=[0.3, 0.7], labels=[0, -1, 1], allow_low_quality_matches=True | |
), | |
box2box_transform=L(Box2BoxTransform)(weights=[1.0, 1.0, 1.0, 1.0]), | |
batch_size_per_image=256, | |
positive_fraction=0.5, | |
pre_nms_topk=(12000, 6000), | |
post_nms_topk=(2000, 1000), | |
nms_thresh=0.7, | |
), | |
roi_heads=L(Res5ROIHeads)( | |
num_classes=80, | |
batch_size_per_image=512, | |
positive_fraction=0.25, | |
proposal_matcher=L(Matcher)( | |
thresholds=[0.5], labels=[0, 1], allow_low_quality_matches=False | |
), | |
in_features=["res4"], | |
pooler=L(ROIPooler)( | |
output_size=14, | |
scales=(1.0 / 16,), | |
sampling_ratio=0, | |
pooler_type="ROIAlignV2", | |
), | |
res5=L(ResNet.make_stage)( | |
block_class=BottleneckBlock, | |
num_blocks=3, | |
stride_per_block=[2, 1, 1], | |
in_channels=1024, | |
bottleneck_channels=512, | |
out_channels=2048, | |
norm="FrozenBN", | |
stride_in_1x1=True, | |
), | |
box_predictor=L(FastRCNNOutputLayers)( | |
input_shape=L(ShapeSpec)(channels="${...res5.out_channels}", height=1, width=1), | |
test_score_thresh=0.05, | |
box2box_transform=L(Box2BoxTransform)(weights=(10, 10, 5, 5)), | |
num_classes="${..num_classes}", | |
), | |
mask_head=L(MaskRCNNConvUpsampleHead)( | |
input_shape=L(ShapeSpec)( | |
channels="${...res5.out_channels}", | |
width="${...pooler.output_size}", | |
height="${...pooler.output_size}", | |
), | |
num_classes="${..num_classes}", | |
conv_dims=[256], | |
), | |
), | |
pixel_mean=constants.imagenet_bgr256_mean, | |
pixel_std=constants.imagenet_bgr256_std, | |
input_format="BGR", | |
) | |