Update app.py
Browse filesTrying it with returning lists
app.py
CHANGED
|
@@ -81,8 +81,8 @@ def detect_objects(model_name,url_input,image_input,threshold):
|
|
| 81 |
#Visualize prediction
|
| 82 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 83 |
|
| 84 |
-
|
| 85 |
-
return viz_img
|
| 86 |
|
| 87 |
def set_example_image(example: list) -> dict:
|
| 88 |
return gr.Image.update(value=example[0])
|
|
@@ -124,8 +124,7 @@ with demo:
|
|
| 124 |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
| 125 |
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
|
| 126 |
|
| 127 |
-
|
| 128 |
-
output_text2 = gr.Textbox(value="", label="Confidence Values Upload")
|
| 129 |
|
| 130 |
with gr.Tabs():
|
| 131 |
with gr.TabItem('Image URL'):
|
|
@@ -149,12 +148,19 @@ with demo:
|
|
| 149 |
for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
|
| 150 |
|
| 151 |
img_but = gr.Button('Detect')
|
| 152 |
-
|
|
|
|
|
|
|
| 153 |
|
| 154 |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
|
| 155 |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text2],queue=True)
|
| 156 |
-
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
| 157 |
-
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
| 159 |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
|
| 160 |
|
|
|
|
| 81 |
#Visualize prediction
|
| 82 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
| 83 |
|
| 84 |
+
return [viz_img, processed_outputs]
|
| 85 |
+
# return viz_img
|
| 86 |
|
| 87 |
def set_example_image(example: list) -> dict:
|
| 88 |
return gr.Image.update(value=example[0])
|
|
|
|
| 124 |
options = gr.Dropdown(choices=models,label='Select Object Detection Model',show_label=True)
|
| 125 |
slider_input = gr.Slider(minimum=0.2,maximum=1,value=0.7,label='Prediction Threshold')
|
| 126 |
|
| 127 |
+
|
|
|
|
| 128 |
|
| 129 |
with gr.Tabs():
|
| 130 |
with gr.TabItem('Image URL'):
|
|
|
|
| 148 |
for path in sorted(pathlib.Path('images').rglob('*.JPG'))])
|
| 149 |
|
| 150 |
img_but = gr.Button('Detect')
|
| 151 |
+
|
| 152 |
+
output_text1 = gr.Textbox(value="", label="Confidence Values URL")
|
| 153 |
+
output_text2 = gr.Textbox(value="", label="Confidence Values Upload")
|
| 154 |
|
| 155 |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
|
| 156 |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text2],queue=True)
|
| 157 |
+
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
|
| 158 |
+
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
|
| 159 |
+
|
| 160 |
+
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
| 161 |
+
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
| 165 |
example_url.click(fn=set_example_url,inputs=[example_url],outputs=[url_input])
|
| 166 |
|