gatesla commited on
Commit
1fb67a9
1 Parent(s): 3f1bb3e

Working on understanding and getting something to work

Browse files
Files changed (1) hide show
  1. understand.py +41 -5
understand.py CHANGED
@@ -6,7 +6,8 @@ import numpy as np
6
  from PIL import Image
7
 
8
  from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
9
- from transformers.models.detr.feature_extraction_detr import rgb_to_id
 
10
 
11
  TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG")
12
  MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
@@ -21,15 +22,50 @@ model_name = MODEL_NAME_MASKFORMER
21
 
22
  # Starting with MaskFormer
23
 
24
- processor = MaskFormerImageProcessor.from_pretrained(model_name)
25
- model = MaskFormerForInstanceSegmentation.from_pretrained(model_name)
 
 
 
 
 
 
26
 
 
 
27
  model.to(DEVICE)
28
 
29
  # img = np.array(TEST_IMAGE)
30
 
31
- inputs = processor(images=image, return_tensors="pt")
 
 
 
 
 
32
  inputs.to(DEVICE)
33
 
34
 
35
- outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  from PIL import Image
7
 
8
  from transformers import DetrFeatureExtractor, DetrForSegmentation, MaskFormerImageProcessor, MaskFormerForInstanceSegmentation
9
+ # from transformers.models.detr.feature_extraction_detr import rgb_to_id
10
+ from transformers.image_transforms import rgb_to_id
11
 
12
  TEST_IMAGE = Image.open(r"images/Test_Street_VisDrone.JPG")
13
  MODEL_NAME_DETR = "facebook/detr-resnet-50-panoptic"
 
22
 
23
  # Starting with MaskFormer
24
 
25
+ processor = MaskFormerImageProcessor.from_pretrained(model_name) # <class 'transformers.models.maskformer.image_processing_maskformer.MaskFormerImageProcessor'>
26
+ # DIR() --> ['__call__', '__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__',
27
+ # '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__',
28
+ # '__weakref__', '_auto_class', '_create_repo', '_get_files_timestamps', '_max_size', '_pad_image', '_preprocess', '_preprocess_image', '_preprocess_mask', '_processor_class',
29
+ # '_set_processor_class', '_upload_modified_files', 'center_crop', 'convert_segmentation_map_to_binary_masks', 'do_normalize', 'do_reduce_labels', 'do_rescale', 'do_resize',
30
+ # 'encode_inputs', 'fetch_images', 'from_dict', 'from_json_file', 'from_pretrained', 'get_image_processor_dict', 'ignore_index', 'image_mean', 'image_std', 'model_input_names',
31
+ # 'normalize', 'pad', 'post_process_instance_segmentation', 'post_process_panoptic_segmentation', 'post_process_segmentation', 'post_process_semantic_segmentation', 'preprocess',
32
+ # 'push_to_hub', 'register_for_auto_class', 'resample', 'rescale', 'rescale_factor', 'resize', 'save_pretrained', 'size', 'size_divisor', 'to_dict', 'to_json_file', 'to_json_string']
33
 
34
+ model = MaskFormerForInstanceSegmentation.from_pretrained(model_name) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentation'>
35
+ # DIR for model was too big
36
  model.to(DEVICE)
37
 
38
  # img = np.array(TEST_IMAGE)
39
 
40
+ inputs = processor(images=image, return_tensors="pt") # <class 'transformers.image_processing_utils.BatchFeature'>
41
+ # DIR() --> ['_MutableMapping__marker', '__abstractmethods__', '__class__', '__contains__', '__copy__', '__delattr__', '__delitem__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__',
42
+ # '__ge__', '__getattr__', '__getattribute__', '__getitem__', '__getstate__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__',
43
+ # '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__', '__setitem__', '__setstate__', '__sizeof__', '__slots__', '__str__',
44
+ # '__subclasshook__', '__weakref__', '_abc_impl', '_get_is_as_tensor_fns', 'clear', 'convert_to_tensors', 'copy', 'data', 'fromkeys', 'get', 'items', 'keys', 'pop', 'popitem',
45
+ # 'setdefault', 'to', 'update', 'values']
46
  inputs.to(DEVICE)
47
 
48
 
49
+ outputs = model(**inputs) # <class 'transformers.models.maskformer.modeling_maskformer.MaskFormerForInstanceSegmentationOutput'>
50
+ # Each element of this class is a <class 'torch.Tensor'>
51
+ # DIR() --> ['__annotations__', '__class__', '__contains__', '__dataclass_fields__', '__dataclass_params__', '__delattr__', '__delitem__', '__dict__', '__dir__',
52
+ # '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__iter__',
53
+ # '__le__', '__len__', '__lt__', '__module__', '__ne__', '__new__', '__post_init__', '__reduce__', '__reduce_ex__', '__repr__', '__reversed__', '__setattr__',
54
+ # '__setitem__', '__sizeof__', '__str__', '__subclasshook__', 'attentions', 'auxiliary_logits', 'class_queries_logits', 'clear', 'copy', 'encoder_hidden_states',
55
+ # 'encoder_last_hidden_state', 'fromkeys', 'get', 'hidden_states', 'items', 'keys', 'loss', 'masks_queries_logits', 'move_to_end', 'pixel_decoder_hidden_states',
56
+ # 'pixel_decoder_last_hidden_state', 'pop', 'popitem', 'setdefault', 'to_tuple', 'transformer_decoder_hidden_states', 'transformer_decoder_last_hidden_state',
57
+ # 'update', 'values']
58
+
59
+ results = processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
60
+ # <class 'dict'>
61
+ # Example of
62
+
63
+
64
+ # From Tutorial (Box 79)
65
+ # def get_mask(segment_idx):
66
+ # segment = results['segments_info'][segment_idx]
67
+ # print("Visualizing mask for:", id2label[segment['label_id']])
68
+ # mask = (predicted_panoptic_seg == segment['id'])
69
+ # visual_mask = (mask * 255).astype(np.uint8)
70
+ # return Image.fromarray(visual_mask)
71
+