Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler | |
| import torch | |
| from datetime import datetime | |
| # Check for GPU and set up the model | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| dtype = torch.float16 if device == "cuda" else torch.float32 | |
| # Use a smaller, faster model | |
| model_id = "runwayml/stable-diffusion-v1-5" | |
| # Load the pipeline with optimizations | |
| scheduler = EulerDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| model_id, | |
| scheduler=scheduler, | |
| torch_dtype=dtype, | |
| safety_checker=None, # Disable safety checker for faster generation | |
| requires_safety_checker=False | |
| ).to(device) | |
| # Apply optimizations based on available hardware | |
| if device == "cuda": | |
| try: | |
| pipe.enable_xformers_memory_efficient_attention() # Flash attention if available | |
| except: | |
| print("xformers not available, using default attention") | |
| pipe.enable_attention_slicing(1) # Minimal slicing for balance between speed and memory | |
| else: | |
| pipe.enable_attention_slicing() # More aggressive slicing for CPU | |
| # Warm up the model (important for consistent speed) | |
| print("Warming up the model...") | |
| with torch.inference_mode(): | |
| _ = pipe("warmup", num_inference_steps=1, guidance_scale=1) | |
| def generate_image( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| steps: int = 20, # Slightly more steps for CPU | |
| guidance_scale: float = 7.0, | |
| seed: int = -1, | |
| width: int = 512, | |
| height: int = 512 | |
| ): | |
| # Start timer | |
| start_time = datetime.now() | |
| # Set random seed if provided | |
| generator = None | |
| if seed != -1: | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Generate image with optimizations | |
| with torch.inference_mode(), torch.autocast(device) if device == "cuda" else torch.no_grad(): | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=int(steps), | |
| guidance_scale=guidance_scale, | |
| generator=generator, | |
| width=width, | |
| height=height | |
| ).images[0] | |
| # Calculate generation time | |
| gen_time = (datetime.now() - start_time).total_seconds() | |
| print(f"Generated image in {gen_time:.2f} seconds") | |
| return image, f"Device: {device.upper()} | Time: {gen_time:.2f}s | Steps: {steps} | Size: {width}x{height}" | |
| # Gradio interface | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown(""" | |
| # ⚡ Diffusion Image Generator | |
| *Optimized for Hugging Face Spaces* | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="A beautiful landscape with mountains and a lake", | |
| max_lines=3 | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="blurry, low quality, distorted", | |
| max_lines=2 | |
| ) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| with gr.Row(): | |
| steps = gr.Slider(8, 30, value=20, step=1, label="Inference Steps") | |
| guidance_scale = gr.Slider(1, 10, value=7.0, step=0.5, label="Guidance Scale") | |
| with gr.Row(): | |
| seed = gr.Number(value=-1, label="Seed (-1 for random)") | |
| width = gr.Slider(384, 512, value=512, step=64, label="Width") | |
| height = gr.Slider(384, 512, value=512, step=64, label="Height") | |
| generate_btn = gr.Button("Generate Image", variant="primary") | |
| info_output = gr.Textbox(label="Generation Info", interactive=False) | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", type="pil", show_download_button=True) | |
| # Examples for quick testing | |
| gr.Examples( | |
| examples=[ | |
| ["A futuristic cyberpunk city at night, neon lights, rain reflections", "blurry, low quality", 20, 7.0, 42], | |
| ["A cute robot cat, digital art, vibrant colors", "ugly, deformed", 18, 7.5, -1], | |
| ["A majestic dragon flying over mountains at sunset, fantasy art", "cartoon, sketch", 25, 8.0, 123] | |
| ], | |
| inputs=[prompt, negative_prompt, steps, guidance_scale, seed], | |
| outputs=[output_image, info_output], | |
| fn=generate_image, | |
| cache_examples=True | |
| ) | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[prompt, negative_prompt, steps, guidance_scale, seed, width, height], | |
| outputs=[output_image, info_output] | |
| ) | |
| # For Hugging Face Spaces | |
| demo.queue(max_size=2) # More conservative queue size | |
| demo.launch(debug=False) |