Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import requests | |
from PIL import Image | |
from transformers import Blip2Processor, Blip2ForConditionalGeneration #Blip2 models | |
# Load the pretrained processor and model | |
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b") | |
model = Blip2ForConditionalGeneration.from_pretrained("Salesforce/blip2-opt-2.7b") | |
# Specify the directory where your images are | |
image_dir = "/" | |
image_exts = ["jpg", "jpeg", "png"] # specify the image file extensions to search for | |
# Open a file to write the captions | |
with open("captions.txt", "w") as caption_file: | |
# Iterate over each image file in the directory | |
for image_ext in image_exts: | |
for img_path in glob.glob(os.path.join(image_dir, f"*.{image_ext}")): | |
# Load your image | |
raw_image = Image.open(img_path).convert('RGB') | |
# You do not need a question for image captioning | |
inputs = processor(raw_image, return_tensors="pt") | |
# Generate a caption for the image | |
out = model.generate(**inputs, max_new_tokens=50) | |
# Decode the generated tokens to text | |
caption = processor.decode(out[0], skip_special_tokens=True) | |
# Write the caption to the file, prepended by the image file name | |
caption_file.write(f"{os.path.basename(img_path)}: {caption}\n") |