Spaces:
Running
Running
import torch | |
from torch import nn, Tensor | |
from torchvision import transforms | |
from torchvision.transforms import functional | |
import os | |
import logging | |
import folder_paths | |
import comfy.utils | |
from comfy.ldm.flux.layers import timestep_embedding | |
from insightface.app import FaceAnalysis | |
from facexlib.parsing import init_parsing_model | |
from facexlib.utils.face_restoration_helper import FaceRestoreHelper | |
import torch.nn.functional as F | |
from .eva_clip.constants import OPENAI_DATASET_MEAN, OPENAI_DATASET_STD | |
from .encoders_flux import IDFormer, PerceiverAttentionCA | |
INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface") | |
MODELS_DIR = os.path.join(folder_paths.models_dir, "pulid") | |
if "pulid" not in folder_paths.folder_names_and_paths: | |
current_paths = [MODELS_DIR] | |
else: | |
current_paths, _ = folder_paths.folder_names_and_paths["pulid"] | |
folder_paths.folder_names_and_paths["pulid"] = (current_paths, folder_paths.supported_pt_extensions) | |
from .online_train2 import online_train | |
class PulidFluxModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
self.double_interval = 2 | |
self.single_interval = 4 | |
# Init encoder | |
self.pulid_encoder = IDFormer() | |
# Init attention | |
num_ca = 19 // self.double_interval + 38 // self.single_interval | |
if 19 % self.double_interval != 0: | |
num_ca += 1 | |
if 38 % self.single_interval != 0: | |
num_ca += 1 | |
self.pulid_ca = nn.ModuleList([ | |
PerceiverAttentionCA() for _ in range(num_ca) | |
]) | |
def from_pretrained(self, path: str): | |
state_dict = comfy.utils.load_torch_file(path, safe_load=True) | |
state_dict_dict = {} | |
for k, v in state_dict.items(): | |
module = k.split('.')[0] | |
state_dict_dict.setdefault(module, {}) | |
new_k = k[len(module) + 1:] | |
state_dict_dict[module][new_k] = v | |
for module in state_dict_dict: | |
getattr(self, module).load_state_dict(state_dict_dict[module], strict=True) | |
del state_dict | |
del state_dict_dict | |
def get_embeds(self, face_embed, clip_embeds): | |
return self.pulid_encoder(face_embed, clip_embeds) | |
def forward_orig( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor = None, | |
control=None, | |
) -> Tensor: | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) | |
if self.params.guidance_embed: | |
if guidance is None: | |
raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
ca_idx = 0 | |
for i, block in enumerate(self.double_blocks): | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
if control is not None: # Controlnet | |
control_i = control.get("input") | |
if i < len(control_i): | |
add = control_i[i] | |
if add is not None: | |
img += add | |
# PuLID attention | |
if self.pulid_data: | |
if i % self.pulid_double_interval == 0: | |
# Will calculate influence of all pulid nodes at once | |
for _, node_data in self.pulid_data.items(): | |
if node_data['sigma_start'] >= timesteps >= node_data['sigma_end']: | |
img = img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], img) | |
ca_idx += 1 | |
img = torch.cat((txt, img), 1) | |
for i, block in enumerate(self.single_blocks): | |
img = block(img, vec=vec, pe=pe) | |
if control is not None: # Controlnet | |
control_o = control.get("output") | |
if i < len(control_o): | |
add = control_o[i] | |
if add is not None: | |
img[:, txt.shape[1] :, ...] += add | |
# PuLID attention | |
if self.pulid_data: | |
real_img, txt = img[:, txt.shape[1]:, ...], img[:, :txt.shape[1], ...] | |
if i % self.pulid_single_interval == 0: | |
# Will calculate influence of all nodes at once | |
for _, node_data in self.pulid_data.items(): | |
if node_data['sigma_start'] >= timesteps >= node_data['sigma_end']: | |
real_img = real_img + node_data['weight'] * self.pulid_ca[ca_idx](node_data['embedding'], real_img) | |
ca_idx += 1 | |
img = torch.cat((txt, real_img), 1) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def tensor_to_image(tensor): | |
image = tensor.mul(255).clamp(0, 255).byte().cpu() | |
image = image[..., [2, 1, 0]].numpy() | |
return image | |
def image_to_tensor(image): | |
tensor = torch.clamp(torch.from_numpy(image).float() / 255., 0, 1) | |
tensor = tensor[..., [2, 1, 0]] | |
return tensor | |
def resize_with_pad(img, target_size): # image: 1, h, w, 3 | |
img = img.permute(0, 3, 1, 2) | |
H, W = target_size | |
h, w = img.shape[2], img.shape[3] | |
scale_h = H / h | |
scale_w = W / w | |
scale = min(scale_h, scale_w) | |
new_h = int(min(h * scale,H)) | |
new_w = int(min(w * scale,W)) | |
new_size = (new_h, new_w) | |
img = F.interpolate(img, size=new_size, mode='bicubic', align_corners=False) | |
pad_top = (H - new_h) // 2 | |
pad_bottom = (H - new_h) - pad_top | |
pad_left = (W - new_w) // 2 | |
pad_right = (W - new_w) - pad_left | |
img = F.pad(img, pad=(pad_left, pad_right, pad_top, pad_bottom), mode='constant', value=0) | |
return img.permute(0, 2, 3, 1) | |
def to_gray(img): | |
x = 0.299 * img[:, 0:1] + 0.587 * img[:, 1:2] + 0.114 * img[:, 2:3] | |
x = x.repeat(1, 3, 1, 1) | |
return x | |
""" | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
Nodes | |
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |
""" | |
class PulidFluxModelLoader: | |
def INPUT_TYPES(s): | |
return {"required": {"pulid_file": (folder_paths.get_filename_list("pulid"), )}} | |
RETURN_TYPES = ("PULIDFLUX",) | |
FUNCTION = "load_model" | |
CATEGORY = "pulid" | |
def load_model(self, pulid_file): | |
model_path = folder_paths.get_full_path("pulid", pulid_file) | |
# Also initialize the model, takes longer to load but then it doesn't have to be done every time you change parameters in the apply node | |
model = PulidFluxModel() | |
logging.info("Loading PuLID-Flux model.") | |
model.from_pretrained(path=model_path) | |
return (model,) | |
class PulidFluxInsightFaceLoader: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"provider": (["CPU", "CUDA", "ROCM"], ), | |
}, | |
} | |
RETURN_TYPES = ("FACEANALYSIS",) | |
FUNCTION = "load_insightface" | |
CATEGORY = "pulid" | |
def load_insightface(self, provider): | |
model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l | |
model.prepare(ctx_id=0, det_size=(640, 640)) | |
return (model,) | |
class PulidFluxEvaClipLoader: | |
def INPUT_TYPES(s): | |
return { | |
"required": {}, | |
} | |
RETURN_TYPES = ("EVA_CLIP",) | |
FUNCTION = "load_eva_clip" | |
CATEGORY = "pulid" | |
def load_eva_clip(self): | |
from .eva_clip.factory import create_model_and_transforms | |
model, _, _ = create_model_and_transforms('EVA02-CLIP-L-14-336', 'eva_clip', force_custom_clip=True) | |
model = model.visual | |
eva_transform_mean = getattr(model, 'image_mean', OPENAI_DATASET_MEAN) | |
eva_transform_std = getattr(model, 'image_std', OPENAI_DATASET_STD) | |
if not isinstance(eva_transform_mean, (list, tuple)): | |
model["image_mean"] = (eva_transform_mean,) * 3 | |
if not isinstance(eva_transform_std, (list, tuple)): | |
model["image_std"] = (eva_transform_std,) * 3 | |
return (model,) | |
class ApplyPulidFlux: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL", ), | |
"pulid_flux": ("PULIDFLUX", ), | |
"eva_clip": ("EVA_CLIP", ), | |
"face_analysis": ("FACEANALYSIS", ), | |
"image": ("IMAGE", ), | |
"weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 5.0, "step": 0.05 }), | |
"start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001 }), | |
"fusion": (["mean","concat","max","norm_id","max_token","auto_weight","train_weight"],), | |
"fusion_weight_max": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 20.0, "step": 0.1 }), | |
"fusion_weight_min": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 20.0, "step": 0.1 }), | |
"train_step": ("INT", {"default": 1000, "min": 0, "max": 20000, "step": 1 }), | |
"use_gray": ("BOOLEAN", {"default": True, "label_on": "enabled", "label_off": "disabled"}), | |
}, | |
"optional": { | |
"attn_mask": ("MASK", ), | |
"prior_image": ("IMAGE",), # for train weight, as the target | |
}, | |
"hidden": { | |
"unique_id": "UNIQUE_ID" | |
}, | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "apply_pulid_flux" | |
CATEGORY = "pulid" | |
def __init__(self): | |
self.pulid_data_dict = None | |
def apply_pulid_flux(self, model, pulid_flux, eva_clip, face_analysis, image, weight, start_at, end_at, prior_image=None,fusion="mean", fusion_weight_max=1.0, fusion_weight_min=0.0, train_step=1000, use_gray=True, attn_mask=None, unique_id=None): | |
device = comfy.model_management.get_torch_device() | |
# Why should I care what args say, when the unet model has a different dtype?! | |
# Am I missing something?! | |
#dtype = comfy.model_management.unet_dtype() | |
dtype = model.model.diffusion_model.dtype | |
# For 8bit use bfloat16 (because ufunc_add_CUDA is not implemented) | |
if dtype in [torch.float8_e4m3fn, torch.float8_e5m2]: | |
dtype = torch.bfloat16 | |
eva_clip.to(device, dtype=dtype) | |
pulid_flux.to(device, dtype=dtype) | |
# TODO: Add masking support! | |
if attn_mask is not None: | |
if attn_mask.dim() > 3: | |
attn_mask = attn_mask.squeeze(-1) | |
elif attn_mask.dim() < 3: | |
attn_mask = attn_mask.unsqueeze(0) | |
attn_mask = attn_mask.to(device, dtype=dtype) | |
if prior_image is not None: | |
prior_image = resize_with_pad(prior_image.to(image.device, dtype=image.dtype), target_size=(image.shape[1], image.shape[2])) | |
image=torch.cat((prior_image,image),dim=0) | |
image = tensor_to_image(image) | |
face_helper = FaceRestoreHelper( | |
upscale_factor=1, | |
face_size=512, | |
crop_ratio=(1, 1), | |
det_model='retinaface_resnet50', | |
save_ext='png', | |
device=device, | |
) | |
face_helper.face_parse = None | |
face_helper.face_parse = init_parsing_model(model_name='bisenet', device=device) | |
bg_label = [0, 16, 18, 7, 8, 9, 14, 15] | |
cond = [] | |
# Analyse multiple images at multiple sizes and combine largest area embeddings | |
for i in range(image.shape[0]): | |
# get insightface embeddings | |
iface_embeds = None | |
for size in [(size, size) for size in range(640, 256, -64)]: | |
face_analysis.det_model.input_size = size | |
face_info = face_analysis.get(image[i]) | |
if face_info: | |
# Only use the maximum face | |
# Removed the reverse=True from original code because we need the largest area not the smallest one! | |
# Sorts the list in ascending order (smallest to largest), | |
# then selects the last element, which is the largest face | |
face_info = sorted(face_info, key=lambda x: (x.bbox[2] - x.bbox[0]) * (x.bbox[3] - x.bbox[1]))[-1] | |
iface_embeds = torch.from_numpy(face_info.embedding).unsqueeze(0).to(device, dtype=dtype) | |
break | |
else: | |
# No face detected, skip this image | |
logging.warning(f'Warning: No face detected in image {str(i)}') | |
continue | |
# get eva_clip embeddings | |
face_helper.clean_all() | |
face_helper.read_image(image[i]) | |
face_helper.get_face_landmarks_5(only_center_face=True) | |
face_helper.align_warp_face() | |
if len(face_helper.cropped_faces) == 0: | |
# No face detected, skip this image | |
continue | |
# Get aligned face image | |
align_face = face_helper.cropped_faces[0] | |
# Convert bgr face image to tensor | |
align_face = image_to_tensor(align_face).unsqueeze(0).permute(0, 3, 1, 2).to(device) | |
parsing_out = face_helper.face_parse(functional.normalize(align_face, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0] | |
parsing_out = parsing_out.argmax(dim=1, keepdim=True) | |
bg = sum(parsing_out == i for i in bg_label).bool() | |
white_image = torch.ones_like(align_face) | |
# Only keep the face features | |
if use_gray: | |
_align_face = to_gray(align_face) | |
else: | |
_align_face = align_face | |
face_features_image = torch.where(bg, white_image, _align_face) | |
# Transform img before sending to eva_clip | |
# Apparently MPS only supports NEAREST interpolation? | |
face_features_image = functional.resize(face_features_image, eva_clip.image_size, transforms.InterpolationMode.BICUBIC if 'cuda' in device.type else transforms.InterpolationMode.NEAREST).to(device, dtype=dtype) | |
face_features_image = functional.normalize(face_features_image, eva_clip.image_mean, eva_clip.image_std) | |
# eva_clip | |
id_cond_vit, id_vit_hidden = eva_clip(face_features_image, return_all_features=False, return_hidden=True, shuffle=False) | |
id_cond_vit = id_cond_vit.to(device, dtype=dtype) | |
for idx in range(len(id_vit_hidden)): | |
id_vit_hidden[idx] = id_vit_hidden[idx].to(device, dtype=dtype) | |
id_cond_vit = torch.div(id_cond_vit, torch.norm(id_cond_vit, 2, 1, True)) | |
# Combine embeddings | |
id_cond = torch.cat([iface_embeds, id_cond_vit], dim=-1) | |
# Pulid_encoder | |
cond.append(pulid_flux.get_embeds(id_cond, id_vit_hidden)) | |
if not cond: | |
# No faces detected, return the original model | |
logging.warning("PuLID warning: No faces detected in any of the given images, returning unmodified model.") | |
return (model,) | |
# fusion embeddings | |
if fusion == "mean": | |
cond = torch.cat(cond).to(device, dtype=dtype) # N,32,2048 | |
if cond.shape[0] > 1: | |
cond = torch.mean(cond, dim=0, keepdim=True) | |
elif fusion == "concat": | |
cond = torch.cat(cond, dim=1).to(device, dtype=dtype) | |
elif fusion == "max": | |
cond = torch.cat(cond).to(device, dtype=dtype) | |
if cond.shape[0] > 1: | |
cond = torch.max(cond, dim=0, keepdim=True)[0] | |
elif fusion == "norm_id": | |
cond = torch.cat(cond).to(device, dtype=dtype) | |
if cond.shape[0] > 1: | |
norm=torch.norm(cond,dim=(1,2)) | |
norm=norm/torch.sum(norm) | |
cond=torch.einsum("wij,w->ij",cond,norm).unsqueeze(0) | |
elif fusion == "max_token": | |
cond = torch.cat(cond).to(device, dtype=dtype) | |
if cond.shape[0] > 1: | |
norm=torch.norm(cond,dim=2) | |
_,idx=torch.max(norm,dim=0) | |
cond=torch.stack([cond[j,i] for i,j in enumerate(idx)]).unsqueeze(0) | |
elif fusion == "auto_weight": # 🤔 | |
cond = torch.cat(cond).to(device, dtype=dtype) | |
if cond.shape[0] > 1: | |
norm=torch.norm(cond,dim=2) | |
order=torch.argsort(norm,descending=False,dim=0) | |
regular_weight=torch.linspace(fusion_weight_min,fusion_weight_max,norm.shape[0]).to(device, dtype=dtype) | |
_cond=[] | |
for i in range(cond.shape[1]): | |
o=order[:,i] | |
_cond.append(torch.einsum('ij,i->j',cond[:,i,:],regular_weight[o])) | |
cond=torch.stack(_cond,dim=0).unsqueeze(0) | |
elif fusion == "train_weight": | |
cond = torch.cat(cond).to(device, dtype=dtype) | |
if cond.shape[0] > 1: | |
if train_step > 0: | |
with torch.inference_mode(False): | |
cond = online_train(cond, device=cond.device, step=train_step) | |
else: | |
cond = torch.mean(cond, dim=0, keepdim=True) | |
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
# Patch the Flux model (original diffusion_model) | |
# Nah, I don't care for the official ModelPatcher because it's undocumented! | |
# I want the end result now, and I don’t mind if I break other custom nodes in the process. 😄 | |
flux_model = model.model.diffusion_model | |
# Let's see if we already patched the underlying flux model, if not apply patch | |
if not hasattr(flux_model, "pulid_ca"): | |
# Add perceiver attention, variables and current node data (weight, embedding, sigma_start, sigma_end) | |
# The pulid_data is stored in Dict by unique node index, | |
# so we can chain multiple ApplyPulidFlux nodes! | |
flux_model.pulid_ca = pulid_flux.pulid_ca | |
flux_model.pulid_double_interval = pulid_flux.double_interval | |
flux_model.pulid_single_interval = pulid_flux.single_interval | |
flux_model.pulid_data = {} | |
# Replace model forward_orig with our own | |
new_method = forward_orig.__get__(flux_model, flux_model.__class__) | |
setattr(flux_model, 'forward_orig', new_method) | |
# Patch is already in place, add data (weight, embedding, sigma_start, sigma_end) under unique node index | |
flux_model.pulid_data[unique_id] = { | |
'weight': weight, | |
'embedding': cond, | |
'sigma_start': sigma_start, | |
'sigma_end': sigma_end, | |
} | |
# Keep a reference for destructor (if node is deleted the data will be deleted as well) | |
self.pulid_data_dict = {'data': flux_model.pulid_data, 'unique_id': unique_id} | |
return (model,) | |
def __del__(self): | |
# Destroy the data for this node | |
if self.pulid_data_dict: | |
del self.pulid_data_dict['data'][self.pulid_data_dict['unique_id']] | |
del self.pulid_data_dict | |
NODE_CLASS_MAPPINGS = { | |
"PulidFluxModelLoader": PulidFluxModelLoader, | |
"PulidFluxInsightFaceLoader": PulidFluxInsightFaceLoader, | |
"PulidFluxEvaClipLoader": PulidFluxEvaClipLoader, | |
"ApplyPulidFlux": ApplyPulidFlux, | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"PulidFluxModelLoader": "Load PuLID Flux Model", | |
"PulidFluxInsightFaceLoader": "Load InsightFace (PuLID Flux)", | |
"PulidFluxEvaClipLoader": "Load Eva Clip (PuLID Flux)", | |
"ApplyPulidFlux": "Apply PuLID Flux", | |
} | |