Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
import logging | |
import numpy as np | |
import operator | |
import pickle | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
import torch.utils.data as torchdata | |
from tabulate import tabulate | |
from termcolor import colored | |
from custom_detectron2.config import configurable | |
from custom_detectron2.structures import BoxMode | |
from custom_detectron2.utils.comm import get_world_size | |
from custom_detectron2.utils.env import seed_all_rng | |
from custom_detectron2.utils.file_io import PathManager | |
from custom_detectron2.utils.logger import _log_api_usage, log_first_n | |
from .catalog import DatasetCatalog, MetadataCatalog | |
from .common import AspectRatioGroupedDataset, DatasetFromList, MapDataset, ToIterableDataset | |
from .dataset_mapper import DatasetMapper | |
from .detection_utils import check_metadata_consistency | |
from .samplers import ( | |
InferenceSampler, | |
RandomSubsetTrainingSampler, | |
RepeatFactorTrainingSampler, | |
TrainingSampler, | |
) | |
""" | |
This file contains the default logic to build a dataloader for training or testing. | |
""" | |
__all__ = [ | |
"build_batch_data_loader", | |
"build_detection_train_loader", | |
"build_detection_test_loader", | |
"get_detection_dataset_dicts", | |
"load_proposals_into_dataset", | |
"print_instances_class_histogram", | |
] | |
def filter_images_with_only_crowd_annotations(dataset_dicts): | |
""" | |
Filter out images with none annotations or only crowd annotations | |
(i.e., images without non-crowd annotations). | |
A common training-time preprocessing on COCO dataset. | |
Args: | |
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. | |
Returns: | |
list[dict]: the same format, but filtered. | |
""" | |
num_before = len(dataset_dicts) | |
def valid(anns): | |
for ann in anns: | |
if ann.get("iscrowd", 0) == 0: | |
return True | |
return False | |
dataset_dicts = [x for x in dataset_dicts if valid(x["annotations"])] | |
num_after = len(dataset_dicts) | |
logger = logging.getLogger(__name__) | |
logger.info( | |
"Removed {} images with no usable annotations. {} images left.".format( | |
num_before - num_after, num_after | |
) | |
) | |
return dataset_dicts | |
def filter_images_with_few_keypoints(dataset_dicts, min_keypoints_per_image): | |
""" | |
Filter out images with too few number of keypoints. | |
Args: | |
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. | |
Returns: | |
list[dict]: the same format as dataset_dicts, but filtered. | |
""" | |
num_before = len(dataset_dicts) | |
def visible_keypoints_in_image(dic): | |
# Each keypoints field has the format [x1, y1, v1, ...], where v is visibility | |
annotations = dic["annotations"] | |
return sum( | |
(np.array(ann["keypoints"][2::3]) > 0).sum() | |
for ann in annotations | |
if "keypoints" in ann | |
) | |
dataset_dicts = [ | |
x for x in dataset_dicts if visible_keypoints_in_image(x) >= min_keypoints_per_image | |
] | |
num_after = len(dataset_dicts) | |
logger = logging.getLogger(__name__) | |
logger.info( | |
"Removed {} images with fewer than {} keypoints.".format( | |
num_before - num_after, min_keypoints_per_image | |
) | |
) | |
return dataset_dicts | |
def load_proposals_into_dataset(dataset_dicts, proposal_file): | |
""" | |
Load precomputed object proposals into the dataset. | |
The proposal file should be a pickled dict with the following keys: | |
- "ids": list[int] or list[str], the image ids | |
- "boxes": list[np.ndarray], each is an Nx4 array of boxes corresponding to the image id | |
- "objectness_logits": list[np.ndarray], each is an N sized array of objectness scores | |
corresponding to the boxes. | |
- "bbox_mode": the BoxMode of the boxes array. Defaults to ``BoxMode.XYXY_ABS``. | |
Args: | |
dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. | |
proposal_file (str): file path of pre-computed proposals, in pkl format. | |
Returns: | |
list[dict]: the same format as dataset_dicts, but added proposal field. | |
""" | |
logger = logging.getLogger(__name__) | |
logger.info("Loading proposals from: {}".format(proposal_file)) | |
with PathManager.open(proposal_file, "rb") as f: | |
proposals = pickle.load(f, encoding="latin1") | |
# Rename the key names in D1 proposal files | |
rename_keys = {"indexes": "ids", "scores": "objectness_logits"} | |
for key in rename_keys: | |
if key in proposals: | |
proposals[rename_keys[key]] = proposals.pop(key) | |
# Fetch the indexes of all proposals that are in the dataset | |
# Convert image_id to str since they could be int. | |
img_ids = set({str(record["image_id"]) for record in dataset_dicts}) | |
id_to_index = {str(id): i for i, id in enumerate(proposals["ids"]) if str(id) in img_ids} | |
# Assuming default bbox_mode of precomputed proposals are 'XYXY_ABS' | |
bbox_mode = BoxMode(proposals["bbox_mode"]) if "bbox_mode" in proposals else BoxMode.XYXY_ABS | |
for record in dataset_dicts: | |
# Get the index of the proposal | |
i = id_to_index[str(record["image_id"])] | |
boxes = proposals["boxes"][i] | |
objectness_logits = proposals["objectness_logits"][i] | |
# Sort the proposals in descending order of the scores | |
inds = objectness_logits.argsort()[::-1] | |
record["proposal_boxes"] = boxes[inds] | |
record["proposal_objectness_logits"] = objectness_logits[inds] | |
record["proposal_bbox_mode"] = bbox_mode | |
return dataset_dicts | |
def print_instances_class_histogram(dataset_dicts, class_names): | |
""" | |
Args: | |
dataset_dicts (list[dict]): list of dataset dicts. | |
class_names (list[str]): list of class names (zero-indexed). | |
""" | |
num_classes = len(class_names) | |
hist_bins = np.arange(num_classes + 1) | |
histogram = np.zeros((num_classes,), dtype=np.int) | |
for entry in dataset_dicts: | |
annos = entry["annotations"] | |
classes = np.asarray( | |
[x["category_id"] for x in annos if not x.get("iscrowd", 0)], dtype=np.int | |
) | |
if len(classes): | |
assert classes.min() >= 0, f"Got an invalid category_id={classes.min()}" | |
assert ( | |
classes.max() < num_classes | |
), f"Got an invalid category_id={classes.max()} for a dataset of {num_classes} classes" | |
histogram += np.histogram(classes, bins=hist_bins)[0] | |
N_COLS = min(6, len(class_names) * 2) | |
def short_name(x): | |
# make long class names shorter. useful for lvis | |
if len(x) > 13: | |
return x[:11] + ".." | |
return x | |
data = list( | |
itertools.chain(*[[short_name(class_names[i]), int(v)] for i, v in enumerate(histogram)]) | |
) | |
total_num_instances = sum(data[1::2]) | |
data.extend([None] * (N_COLS - (len(data) % N_COLS))) | |
if num_classes > 1: | |
data.extend(["total", total_num_instances]) | |
data = itertools.zip_longest(*[data[i::N_COLS] for i in range(N_COLS)]) | |
table = tabulate( | |
data, | |
headers=["category", "#instances"] * (N_COLS // 2), | |
tablefmt="pipe", | |
numalign="left", | |
stralign="center", | |
) | |
log_first_n( | |
logging.INFO, | |
"Distribution of instances among all {} categories:\n".format(num_classes) | |
+ colored(table, "cyan"), | |
key="message", | |
) | |
def get_detection_dataset_dicts( | |
names, | |
filter_empty=True, | |
min_keypoints=0, | |
proposal_files=None, | |
check_consistency=True, | |
): | |
""" | |
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation. | |
Args: | |
names (str or list[str]): a dataset name or a list of dataset names | |
filter_empty (bool): whether to filter out images without instance annotations | |
min_keypoints (int): filter out images with fewer keypoints than | |
`min_keypoints`. Set to 0 to do nothing. | |
proposal_files (list[str]): if given, a list of object proposal files | |
that match each dataset in `names`. | |
check_consistency (bool): whether to check if datasets have consistent metadata. | |
Returns: | |
list[dict]: a list of dicts following the standard dataset dict format. | |
""" | |
if isinstance(names, str): | |
names = [names] | |
assert len(names), names | |
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in names] | |
if isinstance(dataset_dicts[0], torchdata.Dataset): | |
if len(dataset_dicts) > 1: | |
# ConcatDataset does not work for iterable style dataset. | |
# We could support concat for iterable as well, but it's often | |
# not a good idea to concat iterables anyway. | |
return torchdata.ConcatDataset(dataset_dicts) | |
return dataset_dicts[0] | |
for dataset_name, dicts in zip(names, dataset_dicts): | |
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) | |
if proposal_files is not None: | |
assert len(names) == len(proposal_files) | |
# load precomputed proposals from proposal files | |
dataset_dicts = [ | |
load_proposals_into_dataset(dataset_i_dicts, proposal_file) | |
for dataset_i_dicts, proposal_file in zip(dataset_dicts, proposal_files) | |
] | |
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) | |
has_instances = "annotations" in dataset_dicts[0] | |
if filter_empty and has_instances: | |
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts) | |
if min_keypoints > 0 and has_instances: | |
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints) | |
if check_consistency and has_instances: | |
try: | |
class_names = MetadataCatalog.get(names[0]).thing_classes | |
check_metadata_consistency("thing_classes", names) | |
print_instances_class_histogram(dataset_dicts, class_names) | |
except AttributeError: # class names are not available for this dataset | |
pass | |
assert len(dataset_dicts), "No valid data found in {}.".format(",".join(names)) | |
return dataset_dicts | |
def build_batch_data_loader( | |
dataset, | |
sampler, | |
total_batch_size, | |
*, | |
aspect_ratio_grouping=False, | |
num_workers=0, | |
collate_fn=None, | |
): | |
""" | |
Build a batched dataloader. The main differences from `torch.utils.data.DataLoader` are: | |
1. support aspect ratio grouping options | |
2. use no "batch collation", because this is common for detection training | |
Args: | |
dataset (torch.utils.data.Dataset): a pytorch map-style or iterable dataset. | |
sampler (torch.utils.data.sampler.Sampler or None): a sampler that produces indices. | |
Must be provided iff. ``dataset`` is a map-style dataset. | |
total_batch_size, aspect_ratio_grouping, num_workers, collate_fn: see | |
:func:`build_detection_train_loader`. | |
Returns: | |
iterable[list]. Length of each list is the batch size of the current | |
GPU. Each element in the list comes from the dataset. | |
""" | |
world_size = get_world_size() | |
assert ( | |
total_batch_size > 0 and total_batch_size % world_size == 0 | |
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format( | |
total_batch_size, world_size | |
) | |
batch_size = total_batch_size // world_size | |
if isinstance(dataset, torchdata.IterableDataset): | |
assert sampler is None, "sampler must be None if dataset is IterableDataset" | |
else: | |
dataset = ToIterableDataset(dataset, sampler) | |
if aspect_ratio_grouping: | |
data_loader = torchdata.DataLoader( | |
dataset, | |
num_workers=num_workers, | |
collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements | |
worker_init_fn=worker_init_reset_seed, | |
) # yield individual mapped dict | |
data_loader = AspectRatioGroupedDataset(data_loader, batch_size) | |
if collate_fn is None: | |
return data_loader | |
return MapDataset(data_loader, collate_fn) | |
else: | |
return torchdata.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
drop_last=True, | |
num_workers=num_workers, | |
collate_fn=trivial_batch_collator if collate_fn is None else collate_fn, | |
worker_init_fn=worker_init_reset_seed, | |
) | |
def _train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None): | |
if dataset is None: | |
dataset = get_detection_dataset_dicts( | |
cfg.DATASETS.TRAIN, | |
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS, | |
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE | |
if cfg.MODEL.KEYPOINT_ON | |
else 0, | |
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None, | |
) | |
_log_api_usage("dataset." + cfg.DATASETS.TRAIN[0]) | |
if mapper is None: | |
mapper = DatasetMapper(cfg, True) | |
if sampler is None: | |
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN | |
logger = logging.getLogger(__name__) | |
if isinstance(dataset, torchdata.IterableDataset): | |
logger.info("Not using any sampler since the dataset is IterableDataset.") | |
sampler = None | |
else: | |
logger.info("Using training sampler {}".format(sampler_name)) | |
if sampler_name == "TrainingSampler": | |
sampler = TrainingSampler(len(dataset)) | |
elif sampler_name == "RepeatFactorTrainingSampler": | |
repeat_factors = RepeatFactorTrainingSampler.repeat_factors_from_category_frequency( | |
dataset, cfg.DATALOADER.REPEAT_THRESHOLD | |
) | |
sampler = RepeatFactorTrainingSampler(repeat_factors) | |
elif sampler_name == "RandomSubsetTrainingSampler": | |
sampler = RandomSubsetTrainingSampler( | |
len(dataset), cfg.DATALOADER.RANDOM_SUBSET_RATIO | |
) | |
else: | |
raise ValueError("Unknown training sampler: {}".format(sampler_name)) | |
return { | |
"dataset": dataset, | |
"sampler": sampler, | |
"mapper": mapper, | |
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH, | |
"aspect_ratio_grouping": cfg.DATALOADER.ASPECT_RATIO_GROUPING, | |
"num_workers": cfg.DATALOADER.NUM_WORKERS, | |
} | |
def build_detection_train_loader( | |
dataset, | |
*, | |
mapper, | |
sampler=None, | |
total_batch_size, | |
aspect_ratio_grouping=True, | |
num_workers=0, | |
collate_fn=None, | |
): | |
""" | |
Build a dataloader for object detection with some default features. | |
Args: | |
dataset (list or torch.utils.data.Dataset): a list of dataset dicts, | |
or a pytorch dataset (either map-style or iterable). It can be obtained | |
by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`. | |
mapper (callable): a callable which takes a sample (dict) from dataset and | |
returns the format to be consumed by the model. | |
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=True)``. | |
sampler (torch.utils.data.sampler.Sampler or None): a sampler that produces | |
indices to be applied on ``dataset``. | |
If ``dataset`` is map-style, the default sampler is a :class:`TrainingSampler`, | |
which coordinates an infinite random shuffle sequence across all workers. | |
Sampler must be None if ``dataset`` is iterable. | |
total_batch_size (int): total batch size across all workers. | |
aspect_ratio_grouping (bool): whether to group images with similar | |
aspect ratio for efficiency. When enabled, it requires each | |
element in dataset be a dict with keys "width" and "height". | |
num_workers (int): number of parallel data loading workers | |
collate_fn: a function that determines how to do batching, same as the argument of | |
`torch.utils.data.DataLoader`. Defaults to do no collation and return a list of | |
data. No collation is OK for small batch size and simple data structures. | |
If your batch size is large and each sample contains too many small tensors, | |
it's more efficient to collate them in data loader. | |
Returns: | |
torch.utils.data.DataLoader: | |
a dataloader. Each output from it is a ``list[mapped_element]`` of length | |
``total_batch_size / num_workers``, where ``mapped_element`` is produced | |
by the ``mapper``. | |
""" | |
if isinstance(dataset, list): | |
dataset = DatasetFromList(dataset, copy=False) | |
if mapper is not None: | |
dataset = MapDataset(dataset, mapper) | |
if isinstance(dataset, torchdata.IterableDataset): | |
assert sampler is None, "sampler must be None if dataset is IterableDataset" | |
else: | |
if sampler is None: | |
sampler = TrainingSampler(len(dataset)) | |
assert isinstance(sampler, torchdata.Sampler), f"Expect a Sampler but got {type(sampler)}" | |
return build_batch_data_loader( | |
dataset, | |
sampler, | |
total_batch_size, | |
aspect_ratio_grouping=aspect_ratio_grouping, | |
num_workers=num_workers, | |
collate_fn=collate_fn, | |
) | |
def _test_loader_from_config(cfg, dataset_name, mapper=None): | |
""" | |
Uses the given `dataset_name` argument (instead of the names in cfg), because the | |
standard practice is to evaluate each test set individually (not combining them). | |
""" | |
if isinstance(dataset_name, str): | |
dataset_name = [dataset_name] | |
dataset = get_detection_dataset_dicts( | |
dataset_name, | |
filter_empty=False, | |
proposal_files=[ | |
cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(x)] for x in dataset_name | |
] | |
if cfg.MODEL.LOAD_PROPOSALS | |
else None, | |
) | |
if mapper is None: | |
mapper = DatasetMapper(cfg, False) | |
return { | |
"dataset": dataset, | |
"mapper": mapper, | |
"num_workers": cfg.DATALOADER.NUM_WORKERS, | |
"sampler": InferenceSampler(len(dataset)) | |
if not isinstance(dataset, torchdata.IterableDataset) | |
else None, | |
} | |
def build_detection_test_loader( | |
dataset: Union[List[Any], torchdata.Dataset], | |
*, | |
mapper: Callable[[Dict[str, Any]], Any], | |
sampler: Optional[torchdata.Sampler] = None, | |
batch_size: int = 1, | |
num_workers: int = 0, | |
collate_fn: Optional[Callable[[List[Any]], Any]] = None, | |
) -> torchdata.DataLoader: | |
""" | |
Similar to `build_detection_train_loader`, with default batch size = 1, | |
and sampler = :class:`InferenceSampler`. This sampler coordinates all workers | |
to produce the exact set of all samples. | |
Args: | |
dataset: a list of dataset dicts, | |
or a pytorch dataset (either map-style or iterable). They can be obtained | |
by using :func:`DatasetCatalog.get` or :func:`get_detection_dataset_dicts`. | |
mapper: a callable which takes a sample (dict) from dataset | |
and returns the format to be consumed by the model. | |
When using cfg, the default choice is ``DatasetMapper(cfg, is_train=False)``. | |
sampler: a sampler that produces | |
indices to be applied on ``dataset``. Default to :class:`InferenceSampler`, | |
which splits the dataset across all workers. Sampler must be None | |
if `dataset` is iterable. | |
batch_size: the batch size of the data loader to be created. | |
Default to 1 image per worker since this is the standard when reporting | |
inference time in papers. | |
num_workers: number of parallel data loading workers | |
collate_fn: same as the argument of `torch.utils.data.DataLoader`. | |
Defaults to do no collation and return a list of data. | |
Returns: | |
DataLoader: a torch DataLoader, that loads the given detection | |
dataset, with test-time transformation and batching. | |
Examples: | |
:: | |
data_loader = build_detection_test_loader( | |
DatasetRegistry.get("my_test"), | |
mapper=DatasetMapper(...)) | |
# or, instantiate with a CfgNode: | |
data_loader = build_detection_test_loader(cfg, "my_test") | |
""" | |
if isinstance(dataset, list): | |
dataset = DatasetFromList(dataset, copy=False) | |
if mapper is not None: | |
dataset = MapDataset(dataset, mapper) | |
if isinstance(dataset, torchdata.IterableDataset): | |
assert sampler is None, "sampler must be None if dataset is IterableDataset" | |
else: | |
if sampler is None: | |
sampler = InferenceSampler(len(dataset)) | |
return torchdata.DataLoader( | |
dataset, | |
batch_size=batch_size, | |
sampler=sampler, | |
drop_last=False, | |
num_workers=num_workers, | |
collate_fn=trivial_batch_collator if collate_fn is None else collate_fn, | |
) | |
def trivial_batch_collator(batch): | |
""" | |
A batch collator that does nothing. | |
""" | |
return batch | |
def worker_init_reset_seed(worker_id): | |
initial_seed = torch.initial_seed() % 2**31 | |
seed_all_rng(initial_seed + worker_id) | |