Spaces:
Running
Running
# High Quality Edge Thinning using Pure Python | |
# Written by Lvmin Zhang | |
# 2023 April | |
# Stanford University | |
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet. | |
import cv2 | |
import numpy as np | |
lvmin_kernels_raw = [ | |
np.array([ | |
[-1, -1, -1], | |
[0, 1, 0], | |
[1, 1, 1] | |
], dtype=np.int32), | |
np.array([ | |
[0, -1, -1], | |
[1, 1, -1], | |
[0, 1, 0] | |
], dtype=np.int32) | |
] | |
lvmin_kernels = [] | |
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw] | |
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw] | |
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw] | |
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw] | |
lvmin_prunings_raw = [ | |
np.array([ | |
[-1, -1, -1], | |
[-1, 1, -1], | |
[0, 0, -1] | |
], dtype=np.int32), | |
np.array([ | |
[-1, -1, -1], | |
[-1, 1, -1], | |
[-1, 0, 0] | |
], dtype=np.int32) | |
] | |
lvmin_prunings = [] | |
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw] | |
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw] | |
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw] | |
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw] | |
def remove_pattern(x, kernel): | |
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel) | |
objects = np.where(objects > 127) | |
x[objects] = 0 | |
return x, objects[0].shape[0] > 0 | |
def thin_one_time(x, kernels): | |
y = x | |
is_done = True | |
for k in kernels: | |
y, has_update = remove_pattern(y, k) | |
if has_update: | |
is_done = False | |
return y, is_done | |
def lvmin_thin(x, prunings=True): | |
y = x | |
for i in range(32): | |
y, is_done = thin_one_time(y, lvmin_kernels) | |
if is_done: | |
break | |
if prunings: | |
y, _ = thin_one_time(y, lvmin_prunings) | |
return y | |
def nake_nms(x): | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
return y | |