Spaces:
Running
Running
import torch | |
import numpy as np | |
import os | |
import cv2 | |
import yaml | |
from pathlib import Path | |
from enum import Enum | |
from .log import log | |
import subprocess | |
import threading | |
import comfy | |
import tempfile | |
here = Path(__file__).parent.resolve() | |
config_path = Path(here, "config.yaml") | |
if os.path.exists(config_path): | |
config = yaml.load(open(config_path, "r"), Loader=yaml.FullLoader) | |
annotator_ckpts_path = str(Path(here, config["annotator_ckpts_path"])) | |
TEMP_DIR = config["custom_temp_path"] | |
USE_SYMLINKS = config["USE_SYMLINKS"] | |
ORT_PROVIDERS = config["EP_list"] | |
if USE_SYMLINKS is None or type(USE_SYMLINKS) != bool: | |
log.error("USE_SYMLINKS must be a boolean. Using False by default.") | |
USE_SYMLINKS = False | |
if TEMP_DIR is None: | |
TEMP_DIR = tempfile.gettempdir() | |
elif not os.path.isdir(TEMP_DIR): | |
try: | |
os.makedirs(TEMP_DIR) | |
except: | |
log.error("Failed to create custom temp directory. Using default.") | |
TEMP_DIR = tempfile.gettempdir() | |
if not os.path.isdir(annotator_ckpts_path): | |
try: | |
os.makedirs(annotator_ckpts_path) | |
except: | |
log.error("Failed to create config ckpts directory. Using default.") | |
annotator_ckpts_path = str(Path(here, "./ckpts")) | |
else: | |
annotator_ckpts_path = str(Path(here, "./ckpts")) | |
TEMP_DIR = tempfile.gettempdir() | |
USE_SYMLINKS = False | |
ORT_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider", "CoreMLExecutionProvider"] | |
os.environ['AUX_ANNOTATOR_CKPTS_PATH'] = os.getenv('AUX_ANNOTATOR_CKPTS_PATH', annotator_ckpts_path) | |
os.environ['AUX_TEMP_DIR'] = os.getenv('AUX_TEMP_DIR', str(TEMP_DIR)) | |
os.environ['AUX_USE_SYMLINKS'] = os.getenv('AUX_USE_SYMLINKS', str(USE_SYMLINKS)) | |
os.environ['AUX_ORT_PROVIDERS'] = os.getenv('AUX_ORT_PROVIDERS', str(",".join(ORT_PROVIDERS))) | |
log.info(f"Using ckpts path: {annotator_ckpts_path}") | |
log.info(f"Using symlinks: {USE_SYMLINKS}") | |
log.info(f"Using ort providers: {ORT_PROVIDERS}") | |
# Sync with theoritical limit from Comfy base | |
# https://github.com/comfyanonymous/ComfyUI/blob/eecd69b53a896343775bcb02a4f8349e7442ffd1/nodes.py#L45 | |
MAX_RESOLUTION=16384 | |
def common_annotator_call(model, tensor_image, input_batch=False, show_pbar=True, **kwargs): | |
if "detect_resolution" in kwargs: | |
del kwargs["detect_resolution"] #Prevent weird case? | |
if "resolution" in kwargs: | |
detect_resolution = kwargs["resolution"] if type(kwargs["resolution"]) == int and kwargs["resolution"] >= 64 else 512 | |
del kwargs["resolution"] | |
else: | |
detect_resolution = 512 | |
if input_batch: | |
np_images = np.asarray(tensor_image * 255., dtype=np.uint8) | |
np_results = model(np_images, output_type="np", detect_resolution=detect_resolution, **kwargs) | |
return torch.from_numpy(np_results.astype(np.float32) / 255.0) | |
batch_size = tensor_image.shape[0] | |
if show_pbar: | |
pbar = comfy.utils.ProgressBar(batch_size) | |
out_tensor = None | |
for i, image in enumerate(tensor_image): | |
np_image = np.asarray(image.cpu() * 255., dtype=np.uint8) | |
np_result = model(np_image, output_type="np", detect_resolution=detect_resolution, **kwargs) | |
out = torch.from_numpy(np_result.astype(np.float32) / 255.0) | |
if out_tensor is None: | |
out_tensor = torch.zeros(batch_size, *out.shape, dtype=torch.float32) | |
out_tensor[i] = out | |
if show_pbar: | |
pbar.update(1) | |
return out_tensor | |
def define_preprocessor_inputs(**arguments): | |
return dict( | |
required=dict(image=INPUT.IMAGE()), | |
optional=arguments | |
) | |
class INPUT(Enum): | |
def IMAGE(): | |
return ("IMAGE",) | |
def LATENT(): | |
return ("LATENT",) | |
def MASK(): | |
return ("MASK",) | |
def SEED(default=0): | |
return ("INT", dict(default=default, min=0, max=0xffffffffffffffff)) | |
def RESOLUTION(default=512, min=64, max=MAX_RESOLUTION, step=64): | |
return ("INT", dict(default=default, min=min, max=max, step=step)) | |
def INT(default=0, min=0, max=MAX_RESOLUTION, step=1): | |
return ("INT", dict(default=default, min=min, max=max, step=step)) | |
def FLOAT(default=0, min=0, max=1, step=0.01): | |
return ("FLOAT", dict(default=default, min=min, max=max, step=step)) | |
def STRING(default='', multiline=False): | |
return ("STRING", dict(default=default, multiline=multiline)) | |
def COMBO(values, default=None): | |
return (values, dict(default=values[0] if default is None else default)) | |
def BOOLEAN(default=True): | |
return ("BOOLEAN", dict(default=default)) | |
class ResizeMode(Enum): | |
""" | |
Resize modes for ControlNet input images. | |
""" | |
RESIZE = "Just Resize" | |
INNER_FIT = "Crop and Resize" | |
OUTER_FIT = "Resize and Fill" | |
def int_value(self): | |
if self == ResizeMode.RESIZE: | |
return 0 | |
elif self == ResizeMode.INNER_FIT: | |
return 1 | |
elif self == ResizeMode.OUTER_FIT: | |
return 2 | |
assert False, "NOTREACHED" | |
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89 | |
#Replaced logger with internal log | |
def pixel_perfect_resolution( | |
image: np.ndarray, | |
target_H: int, | |
target_W: int, | |
resize_mode: ResizeMode, | |
) -> int: | |
""" | |
Calculate the estimated resolution for resizing an image while preserving aspect ratio. | |
The function first calculates scaling factors for height and width of the image based on the target | |
height and width. Then, based on the chosen resize mode, it either takes the smaller or the larger | |
scaling factor to estimate the new resolution. | |
If the resize mode is OUTER_FIT, the function uses the smaller scaling factor, ensuring the whole image | |
fits within the target dimensions, potentially leaving some empty space. | |
If the resize mode is not OUTER_FIT, the function uses the larger scaling factor, ensuring the target | |
dimensions are fully filled, potentially cropping the image. | |
After calculating the estimated resolution, the function prints some debugging information. | |
Args: | |
image (np.ndarray): A 3D numpy array representing an image. The dimensions represent [height, width, channels]. | |
target_H (int): The target height for the image. | |
target_W (int): The target width for the image. | |
resize_mode (ResizeMode): The mode for resizing. | |
Returns: | |
int: The estimated resolution after resizing. | |
""" | |
raw_H, raw_W, _ = image.shape | |
k0 = float(target_H) / float(raw_H) | |
k1 = float(target_W) / float(raw_W) | |
if resize_mode == ResizeMode.OUTER_FIT: | |
estimation = min(k0, k1) * float(min(raw_H, raw_W)) | |
else: | |
estimation = max(k0, k1) * float(min(raw_H, raw_W)) | |
log.debug(f"Pixel Perfect Computation:") | |
log.debug(f"resize_mode = {resize_mode}") | |
log.debug(f"raw_H = {raw_H}") | |
log.debug(f"raw_W = {raw_W}") | |
log.debug(f"target_H = {target_H}") | |
log.debug(f"target_W = {target_W}") | |
log.debug(f"estimation = {estimation}") | |
return int(np.round(estimation)) | |
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/controlnet.py#L404 | |
def safe_numpy(x): | |
# A very safe method to make sure that Apple/Mac works | |
y = x | |
# below is very boring but do not change these. If you change these Apple or Mac may fail. | |
y = y.copy() | |
y = np.ascontiguousarray(y) | |
y = y.copy() | |
return y | |
#https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/scripts/utils.py#L140 | |
def get_unique_axis0(data): | |
arr = np.asanyarray(data) | |
idxs = np.lexsort(arr.T) | |
arr = arr[idxs] | |
unique_idxs = np.empty(len(arr), dtype=np.bool_) | |
unique_idxs[:1] = True | |
unique_idxs[1:] = np.any(arr[:-1, :] != arr[1:, :], axis=-1) | |
return arr[unique_idxs] | |
#Ref: https://github.com/ltdrdata/ComfyUI-Manager/blob/284e90dc8296a2e1e4f14b4b2d10fba2f52f0e53/__init__.py#L14 | |
def handle_stream(stream, prefix): | |
for line in stream: | |
print(prefix, line, end="") | |
def run_script(cmd, cwd='.'): | |
process = subprocess.Popen(cmd, cwd=cwd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1) | |
stdout_thread = threading.Thread(target=handle_stream, args=(process.stdout, "")) | |
stderr_thread = threading.Thread(target=handle_stream, args=(process.stderr, "[!]")) | |
stdout_thread.start() | |
stderr_thread.start() | |
stdout_thread.join() | |
stderr_thread.join() | |
return process.wait() | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |