Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .cross_entropy import LabelSmoothingCrossEntropy | |
class JsdCrossEntropy(nn.Module): | |
""" Jensen-Shannon Divergence + Cross-Entropy Loss | |
Based on impl here: https://github.com/google-research/augmix/blob/master/imagenet.py | |
From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty - | |
https://arxiv.org/abs/1912.02781 | |
Hacked together by / Copyright 2020 Ross Wightman | |
""" | |
def __init__(self, num_splits=3, alpha=12, smoothing=0.1): | |
super().__init__() | |
self.num_splits = num_splits | |
self.alpha = alpha | |
if smoothing is not None and smoothing > 0: | |
self.cross_entropy_loss = LabelSmoothingCrossEntropy(smoothing) | |
else: | |
self.cross_entropy_loss = torch.nn.CrossEntropyLoss() | |
def __call__(self, output, target): | |
split_size = output.shape[0] // self.num_splits | |
assert split_size * self.num_splits == output.shape[0] | |
logits_split = torch.split(output, split_size) | |
# Cross-entropy is only computed on clean images | |
loss = self.cross_entropy_loss(logits_split[0], target[:split_size]) | |
probs = [F.softmax(logits, dim=1) for logits in logits_split] | |
# Clamp mixture distribution to avoid exploding KL divergence | |
logp_mixture = torch.clamp(torch.stack(probs).mean(axis=0), 1e-7, 1).log() | |
loss += self.alpha * sum([F.kl_div( | |
logp_mixture, p_split, reduction='batchmean') for p_split in probs]) / len(probs) | |
return loss | |