Spaces:
Running
Running
""" Mixup and Cutmix | |
Papers: | |
mixup: Beyond Empirical Risk Minimization (https://arxiv.org/abs/1710.09412) | |
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features (https://arxiv.org/abs/1905.04899) | |
Code Reference: | |
CutMix: https://github.com/clovaai/CutMix-PyTorch | |
Hacked together by / Copyright 2019, Ross Wightman | |
""" | |
import numpy as np | |
import torch | |
def one_hot(x, num_classes, on_value=1., off_value=0., device='cuda'): | |
x = x.long().view(-1, 1) | |
return torch.full((x.size()[0], num_classes), off_value, device=device).scatter_(1, x, on_value) | |
def mixup_target(target, num_classes, lam=1., smoothing=0.0, device='cuda'): | |
off_value = smoothing / num_classes | |
on_value = 1. - smoothing + off_value | |
y1 = one_hot(target, num_classes, on_value=on_value, off_value=off_value, device=device) | |
y2 = one_hot(target.flip(0), num_classes, on_value=on_value, off_value=off_value, device=device) | |
return y1 * lam + y2 * (1. - lam) | |
def rand_bbox(img_shape, lam, margin=0., count=None): | |
""" Standard CutMix bounding-box | |
Generates a random square bbox based on lambda value. This impl includes | |
support for enforcing a border margin as percent of bbox dimensions. | |
Args: | |
img_shape (tuple): Image shape as tuple | |
lam (float): Cutmix lambda value | |
margin (float): Percentage of bbox dimension to enforce as margin (reduce amount of box outside image) | |
count (int): Number of bbox to generate | |
""" | |
ratio = np.sqrt(1 - lam) | |
img_h, img_w = img_shape[-2:] | |
cut_h, cut_w = int(img_h * ratio), int(img_w * ratio) | |
margin_y, margin_x = int(margin * cut_h), int(margin * cut_w) | |
cy = np.random.randint(0 + margin_y, img_h - margin_y, size=count) | |
cx = np.random.randint(0 + margin_x, img_w - margin_x, size=count) | |
yl = np.clip(cy - cut_h // 2, 0, img_h) | |
yh = np.clip(cy + cut_h // 2, 0, img_h) | |
xl = np.clip(cx - cut_w // 2, 0, img_w) | |
xh = np.clip(cx + cut_w // 2, 0, img_w) | |
return yl, yh, xl, xh | |
def rand_bbox_minmax(img_shape, minmax, count=None): | |
""" Min-Max CutMix bounding-box | |
Inspired by Darknet cutmix impl, generates a random rectangular bbox | |
based on min/max percent values applied to each dimension of the input image. | |
Typical defaults for minmax are usually in the .2-.3 for min and .8-.9 range for max. | |
Args: | |
img_shape (tuple): Image shape as tuple | |
minmax (tuple or list): Min and max bbox ratios (as percent of image size) | |
count (int): Number of bbox to generate | |
""" | |
assert len(minmax) == 2 | |
img_h, img_w = img_shape[-2:] | |
cut_h = np.random.randint(int(img_h * minmax[0]), int(img_h * minmax[1]), size=count) | |
cut_w = np.random.randint(int(img_w * minmax[0]), int(img_w * minmax[1]), size=count) | |
yl = np.random.randint(0, img_h - cut_h, size=count) | |
xl = np.random.randint(0, img_w - cut_w, size=count) | |
yu = yl + cut_h | |
xu = xl + cut_w | |
return yl, yu, xl, xu | |
def cutmix_bbox_and_lam(img_shape, lam, ratio_minmax=None, correct_lam=True, count=None): | |
""" Generate bbox and apply lambda correction. | |
""" | |
if ratio_minmax is not None: | |
yl, yu, xl, xu = rand_bbox_minmax(img_shape, ratio_minmax, count=count) | |
else: | |
yl, yu, xl, xu = rand_bbox(img_shape, lam, count=count) | |
if correct_lam or ratio_minmax is not None: | |
bbox_area = (yu - yl) * (xu - xl) | |
lam = 1. - bbox_area / float(img_shape[-2] * img_shape[-1]) | |
return (yl, yu, xl, xu), lam | |
class Mixup: | |
""" Mixup/Cutmix that applies different params to each element or whole batch | |
Args: | |
mixup_alpha (float): mixup alpha value, mixup is active if > 0. | |
cutmix_alpha (float): cutmix alpha value, cutmix is active if > 0. | |
cutmix_minmax (List[float]): cutmix min/max image ratio, cutmix is active and uses this vs alpha if not None. | |
prob (float): probability of applying mixup or cutmix per batch or element | |
switch_prob (float): probability of switching to cutmix instead of mixup when both are active | |
mode (str): how to apply mixup/cutmix params (per 'batch', 'pair' (pair of elements), 'elem' (element) | |
correct_lam (bool): apply lambda correction when cutmix bbox clipped by image borders | |
label_smoothing (float): apply label smoothing to the mixed target tensor | |
num_classes (int): number of classes for target | |
""" | |
def __init__(self, mixup_alpha=1., cutmix_alpha=0., cutmix_minmax=None, prob=1.0, switch_prob=0.5, | |
mode='batch', correct_lam=True, label_smoothing=0.1, num_classes=1000): | |
self.mixup_alpha = mixup_alpha | |
self.cutmix_alpha = cutmix_alpha | |
self.cutmix_minmax = cutmix_minmax | |
if self.cutmix_minmax is not None: | |
assert len(self.cutmix_minmax) == 2 | |
# force cutmix alpha == 1.0 when minmax active to keep logic simple & safe | |
self.cutmix_alpha = 1.0 | |
self.mix_prob = prob | |
self.switch_prob = switch_prob | |
self.label_smoothing = label_smoothing | |
self.num_classes = num_classes | |
self.mode = mode | |
self.correct_lam = correct_lam # correct lambda based on clipped area for cutmix | |
self.mixup_enabled = True # set to false to disable mixing (intended tp be set by train loop) | |
def _params_per_elem(self, batch_size): | |
lam = np.ones(batch_size, dtype=np.float32) | |
use_cutmix = np.zeros(batch_size, dtype=np.bool) | |
if self.mixup_enabled: | |
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: | |
use_cutmix = np.random.rand(batch_size) < self.switch_prob | |
lam_mix = np.where( | |
use_cutmix, | |
np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size), | |
np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size)) | |
elif self.mixup_alpha > 0.: | |
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha, size=batch_size) | |
elif self.cutmix_alpha > 0.: | |
use_cutmix = np.ones(batch_size, dtype=np.bool) | |
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha, size=batch_size) | |
else: | |
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." | |
lam = np.where(np.random.rand(batch_size) < self.mix_prob, lam_mix.astype(np.float32), lam) | |
return lam, use_cutmix | |
def _params_per_batch(self): | |
lam = 1. | |
use_cutmix = False | |
if self.mixup_enabled and np.random.rand() < self.mix_prob: | |
if self.mixup_alpha > 0. and self.cutmix_alpha > 0.: | |
use_cutmix = np.random.rand() < self.switch_prob | |
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) if use_cutmix else \ | |
np.random.beta(self.mixup_alpha, self.mixup_alpha) | |
elif self.mixup_alpha > 0.: | |
lam_mix = np.random.beta(self.mixup_alpha, self.mixup_alpha) | |
elif self.cutmix_alpha > 0.: | |
use_cutmix = True | |
lam_mix = np.random.beta(self.cutmix_alpha, self.cutmix_alpha) | |
else: | |
assert False, "One of mixup_alpha > 0., cutmix_alpha > 0., cutmix_minmax not None should be true." | |
lam = float(lam_mix) | |
return lam, use_cutmix | |
def _mix_elem(self, x): | |
batch_size = len(x) | |
lam_batch, use_cutmix = self._params_per_elem(batch_size) | |
x_orig = x.clone() # need to keep an unmodified original for mixing source | |
for i in range(batch_size): | |
j = batch_size - i - 1 | |
lam = lam_batch[i] | |
if lam != 1.: | |
if use_cutmix[i]: | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] | |
lam_batch[i] = lam | |
else: | |
x[i] = x[i] * lam + x_orig[j] * (1 - lam) | |
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) | |
def _mix_pair(self, x): | |
batch_size = len(x) | |
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) | |
x_orig = x.clone() # need to keep an unmodified original for mixing source | |
for i in range(batch_size // 2): | |
j = batch_size - i - 1 | |
lam = lam_batch[i] | |
if lam != 1.: | |
if use_cutmix[i]: | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
x[i].shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
x[i][:, yl:yh, xl:xh] = x_orig[j][:, yl:yh, xl:xh] | |
x[j][:, yl:yh, xl:xh] = x_orig[i][:, yl:yh, xl:xh] | |
lam_batch[i] = lam | |
else: | |
x[i] = x[i] * lam + x_orig[j] * (1 - lam) | |
x[j] = x[j] * lam + x_orig[i] * (1 - lam) | |
lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) | |
return torch.tensor(lam_batch, device=x.device, dtype=x.dtype).unsqueeze(1) | |
def _mix_batch(self, x): | |
lam, use_cutmix = self._params_per_batch() | |
if lam == 1.: | |
return 1. | |
if use_cutmix: | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
x.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
x[:, :, yl:yh, xl:xh] = x.flip(0)[:, :, yl:yh, xl:xh] | |
else: | |
x_flipped = x.flip(0).mul_(1. - lam) | |
x.mul_(lam).add_(x_flipped) | |
return lam | |
def __call__(self, x, target): | |
assert len(x) % 2 == 0, 'Batch size should be even when using this' | |
if self.mode == 'elem': | |
lam = self._mix_elem(x) | |
elif self.mode == 'pair': | |
lam = self._mix_pair(x) | |
else: | |
lam = self._mix_batch(x) | |
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, x.device) | |
return x, target | |
class FastCollateMixup(Mixup): | |
""" Fast Collate w/ Mixup/Cutmix that applies different params to each element or whole batch | |
A Mixup impl that's performed while collating the batches. | |
""" | |
def _mix_elem_collate(self, output, batch, half=False): | |
batch_size = len(batch) | |
num_elem = batch_size // 2 if half else batch_size | |
assert len(output) == num_elem | |
lam_batch, use_cutmix = self._params_per_elem(num_elem) | |
for i in range(num_elem): | |
j = batch_size - i - 1 | |
lam = lam_batch[i] | |
mixed = batch[i][0] | |
if lam != 1.: | |
if use_cutmix[i]: | |
if not half: | |
mixed = mixed.copy() | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] | |
lam_batch[i] = lam | |
else: | |
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) | |
np.rint(mixed, out=mixed) | |
output[i] += torch.from_numpy(mixed.astype(np.uint8)) | |
if half: | |
lam_batch = np.concatenate((lam_batch, np.ones(num_elem))) | |
return torch.tensor(lam_batch).unsqueeze(1) | |
def _mix_pair_collate(self, output, batch): | |
batch_size = len(batch) | |
lam_batch, use_cutmix = self._params_per_elem(batch_size // 2) | |
for i in range(batch_size // 2): | |
j = batch_size - i - 1 | |
lam = lam_batch[i] | |
mixed_i = batch[i][0] | |
mixed_j = batch[j][0] | |
assert 0 <= lam <= 1.0 | |
if lam < 1.: | |
if use_cutmix[i]: | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
patch_i = mixed_i[:, yl:yh, xl:xh].copy() | |
mixed_i[:, yl:yh, xl:xh] = mixed_j[:, yl:yh, xl:xh] | |
mixed_j[:, yl:yh, xl:xh] = patch_i | |
lam_batch[i] = lam | |
else: | |
mixed_temp = mixed_i.astype(np.float32) * lam + mixed_j.astype(np.float32) * (1 - lam) | |
mixed_j = mixed_j.astype(np.float32) * lam + mixed_i.astype(np.float32) * (1 - lam) | |
mixed_i = mixed_temp | |
np.rint(mixed_j, out=mixed_j) | |
np.rint(mixed_i, out=mixed_i) | |
output[i] += torch.from_numpy(mixed_i.astype(np.uint8)) | |
output[j] += torch.from_numpy(mixed_j.astype(np.uint8)) | |
lam_batch = np.concatenate((lam_batch, lam_batch[::-1])) | |
return torch.tensor(lam_batch).unsqueeze(1) | |
def _mix_batch_collate(self, output, batch): | |
batch_size = len(batch) | |
lam, use_cutmix = self._params_per_batch() | |
if use_cutmix: | |
(yl, yh, xl, xh), lam = cutmix_bbox_and_lam( | |
output.shape, lam, ratio_minmax=self.cutmix_minmax, correct_lam=self.correct_lam) | |
for i in range(batch_size): | |
j = batch_size - i - 1 | |
mixed = batch[i][0] | |
if lam != 1.: | |
if use_cutmix: | |
mixed = mixed.copy() # don't want to modify the original while iterating | |
mixed[:, yl:yh, xl:xh] = batch[j][0][:, yl:yh, xl:xh] | |
else: | |
mixed = mixed.astype(np.float32) * lam + batch[j][0].astype(np.float32) * (1 - lam) | |
np.rint(mixed, out=mixed) | |
output[i] += torch.from_numpy(mixed.astype(np.uint8)) | |
return lam | |
def __call__(self, batch, _=None): | |
batch_size = len(batch) | |
assert batch_size % 2 == 0, 'Batch size should be even when using this' | |
half = 'half' in self.mode | |
if half: | |
batch_size //= 2 | |
output = torch.zeros((batch_size, *batch[0][0].shape), dtype=torch.uint8) | |
if self.mode == 'elem' or self.mode == 'half': | |
lam = self._mix_elem_collate(output, batch, half=half) | |
elif self.mode == 'pair': | |
lam = self._mix_pair_collate(output, batch) | |
else: | |
lam = self._mix_batch_collate(output, batch) | |
target = torch.tensor([b[1] for b in batch], dtype=torch.int64) | |
target = mixup_target(target, self.num_classes, lam, self.label_smoothing, device='cpu') | |
target = target[:batch_size] | |
return output, target | |