Spaces:
Running
Running
import os | |
import comfy.samplers | |
import comfy.sample | |
import torch | |
from nodes import common_ksampler, CLIPTextEncode | |
from comfy.utils import ProgressBar | |
from .utils import expand_mask, FONTS_DIR, parse_string_to_list | |
import torchvision.transforms.v2 as T | |
import torch.nn.functional as F | |
import logging | |
import folder_paths | |
# From https://github.com/BlenderNeko/ComfyUI_Noise/ | |
def slerp(val, low, high): | |
dims = low.shape | |
low = low.reshape(dims[0], -1) | |
high = high.reshape(dims[0], -1) | |
low_norm = low/torch.norm(low, dim=1, keepdim=True) | |
high_norm = high/torch.norm(high, dim=1, keepdim=True) | |
low_norm[low_norm != low_norm] = 0.0 | |
high_norm[high_norm != high_norm] = 0.0 | |
omega = torch.acos((low_norm*high_norm).sum(1)) | |
so = torch.sin(omega) | |
res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high | |
return res.reshape(dims) | |
class KSamplerVariationsWithNoise: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"latent_image": ("LATENT", ), | |
"main_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"variation_strength": ("FLOAT", {"default": 0.17, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), | |
#"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), | |
#"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), | |
#"return_with_leftover_noise": (["disable", "enable"], ), | |
"variation_seed": ("INT:seed", {"default": 12345, "min": 0, "max": 0xffffffffffffffff}), | |
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.01, "round": 0.01}), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def prepare_mask(self, mask, shape): | |
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(shape[2], shape[3]), mode="bilinear") | |
mask = mask.expand((-1,shape[1],-1,-1)) | |
if mask.shape[0] < shape[0]: | |
mask = mask.repeat((shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:shape[0]] | |
return mask | |
def execute(self, model, latent_image, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, variation_strength, variation_seed, denoise): | |
if main_seed == variation_seed: | |
variation_seed += 1 | |
end_at_step = steps #min(steps, end_at_step) | |
start_at_step = round(end_at_step - end_at_step * denoise) | |
force_full_denoise = True | |
disable_noise = True | |
device = comfy.model_management.get_torch_device() | |
# Generate base noise | |
batch_size, _, height, width = latent_image["samples"].shape | |
generator = torch.manual_seed(main_seed) | |
base_noise = torch.randn((1, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).repeat(batch_size, 1, 1, 1).cpu() | |
# Generate variation noise | |
generator = torch.manual_seed(variation_seed) | |
variation_noise = torch.randn((batch_size, 4, height, width), dtype=torch.float32, device="cpu", generator=generator).cpu() | |
slerp_noise = slerp(variation_strength, base_noise, variation_noise) | |
# Calculate sigma | |
comfy.model_management.load_model_gpu(model) | |
sampler = comfy.samplers.KSampler(model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=1.0, model_options=model.model_options) | |
sigmas = sampler.sigmas | |
sigma = sigmas[start_at_step] - sigmas[end_at_step] | |
sigma /= model.model.latent_format.scale_factor | |
sigma = sigma.detach().cpu().item() | |
work_latent = latent_image.copy() | |
work_latent["samples"] = latent_image["samples"].clone() + slerp_noise * sigma | |
# if there's a mask we need to expand it to avoid artifacts, 5 pixels should be enough | |
if "noise_mask" in latent_image: | |
noise_mask = self.prepare_mask(latent_image["noise_mask"], latent_image['samples'].shape) | |
work_latent["samples"] = noise_mask * work_latent["samples"] + (1-noise_mask) * latent_image["samples"] | |
work_latent['noise_mask'] = expand_mask(latent_image["noise_mask"].clone(), 5, True) | |
return common_ksampler(model, main_seed, steps, cfg, sampler_name, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) | |
class KSamplerVariationsStochastic: | |
def INPUT_TYPES(s): | |
return {"required":{ | |
"model": ("MODEL",), | |
"latent_image": ("LATENT", ), | |
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"steps": ("INT", {"default": 25, "min": 1, "max": 10000}), | |
"cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), | |
"sampler": (comfy.samplers.KSampler.SAMPLERS, ), | |
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), | |
"positive": ("CONDITIONING", ), | |
"negative": ("CONDITIONING", ), | |
"variation_seed": ("INT:seed", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"variation_strength": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), | |
#"variation_sampler": (comfy.samplers.KSampler.SAMPLERS, ), | |
"cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step":0.05, "round": 0.01}), | |
}} | |
RETURN_TYPES = ("LATENT", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, model, latent_image, noise_seed, steps, cfg, sampler, scheduler, positive, negative, variation_seed, variation_strength, cfg_scale, variation_sampler="dpmpp_2m_sde"): | |
# Stage 1: composition sampler | |
force_full_denoise = False # return with leftover noise = "enable" | |
disable_noise = False # add noise = "enable" | |
end_at_step = max(int(steps * (1-variation_strength)), 1) | |
start_at_step = 0 | |
work_latent = latent_image.copy() | |
batch_size = work_latent["samples"].shape[0] | |
work_latent["samples"] = work_latent["samples"][0].unsqueeze(0) | |
stage1 = common_ksampler(model, noise_seed, steps, cfg, sampler, scheduler, positive, negative, work_latent, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)[0] | |
if batch_size > 1: | |
stage1["samples"] = stage1["samples"].clone().repeat(batch_size, 1, 1, 1) | |
# Stage 2: variation sampler | |
force_full_denoise = True | |
disable_noise = True | |
cfg = max(cfg * cfg_scale, 1.0) | |
start_at_step = end_at_step | |
end_at_step = steps | |
return common_ksampler(model, variation_seed, steps, cfg, variation_sampler, scheduler, positive, negative, stage1, denoise=1.0, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) | |
class InjectLatentNoise: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"latent": ("LATENT", ), | |
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), | |
"noise_strength": ("FLOAT", {"default": 1.0, "min": -20.0, "max": 20.0, "step":0.01, "round": 0.01}), | |
"normalize": (["false", "true"], {"default": "false"}), | |
}, | |
"optional": { | |
"mask": ("MASK", ), | |
}} | |
RETURN_TYPES = ("LATENT",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, latent, noise_seed, noise_strength, normalize="false", mask=None): | |
torch.manual_seed(noise_seed) | |
noise_latent = latent.copy() | |
original_samples = noise_latent["samples"].clone() | |
random_noise = torch.randn_like(original_samples) | |
if normalize == "true": | |
mean = original_samples.mean() | |
std = original_samples.std() | |
random_noise = random_noise * std + mean | |
random_noise = original_samples + random_noise * noise_strength | |
if mask is not None: | |
mask = F.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(random_noise.shape[2], random_noise.shape[3]), mode="bilinear") | |
mask = mask.expand((-1,random_noise.shape[1],-1,-1)).clamp(0.0, 1.0) | |
if mask.shape[0] < random_noise.shape[0]: | |
mask = mask.repeat((random_noise.shape[0] -1) // mask.shape[0] + 1, 1, 1, 1)[:random_noise.shape[0]] | |
elif mask.shape[0] > random_noise.shape[0]: | |
mask = mask[:random_noise.shape[0]] | |
random_noise = mask * random_noise + (1-mask) * original_samples | |
noise_latent["samples"] = random_noise | |
return (noise_latent, ) | |
class TextEncodeForSamplerParams: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"text": ("STRING", {"multiline": True, "dynamicPrompts": True, "default": "Separate prompts with at least three dashes\n---\nLike so"}), | |
"clip": ("CLIP", ) | |
}} | |
RETURN_TYPES = ("CONDITIONING", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, text, clip): | |
import re | |
output_text = [] | |
output_encoded = [] | |
text = re.sub(r'[-*=~]{4,}\n', '---\n', text) | |
text = text.split("---\n") | |
for t in text: | |
t = t.strip() | |
if t: | |
output_text.append(t) | |
output_encoded.append(CLIPTextEncode().encode(clip, t)[0]) | |
#if len(output_encoded) == 1: | |
# output = output_encoded[0] | |
#else: | |
output = {"text": output_text, "encoded": output_encoded} | |
return (output, ) | |
class SamplerSelectHelper: | |
def INPUT_TYPES(s): | |
return {"required": { | |
**{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SAMPLERS}, | |
}} | |
RETURN_TYPES = ("STRING", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, **values): | |
values = [v for v in values if values[v]] | |
values = ", ".join(values) | |
return (values, ) | |
class SchedulerSelectHelper: | |
def INPUT_TYPES(s): | |
return {"required": { | |
**{s: ("BOOLEAN", { "default": False }) for s in comfy.samplers.KSampler.SCHEDULERS}, | |
}} | |
RETURN_TYPES = ("STRING", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, **values): | |
values = [v for v in values if values[v]] | |
values = ", ".join(values) | |
return (values, ) | |
class LorasForFluxParams: | |
def INPUT_TYPES(s): | |
optional_loras = ['none'] + folder_paths.get_filename_list("loras") | |
return { | |
"required": { | |
"lora_1": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}), | |
"strength_model_1": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }), | |
}, | |
#"optional": { | |
# "lora_2": (optional_loras, ), | |
# "strength_lora_2": ("STRING", { "multiline": False, "dynamicPrompts": False }), | |
# "lora_3": (optional_loras, ), | |
# "strength_lora_3": ("STRING", { "multiline": False, "dynamicPrompts": False }), | |
# "lora_4": (optional_loras, ), | |
# "strength_lora_4": ("STRING", { "multiline": False, "dynamicPrompts": False }), | |
#} | |
} | |
RETURN_TYPES = ("LORA_PARAMS", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, lora_1, strength_model_1, lora_2="none", strength_lora_2="", lora_3="none", strength_lora_3="", lora_4="none", strength_lora_4=""): | |
output = { "loras": [], "strengths": [] } | |
output["loras"].append(lora_1) | |
output["strengths"].append(parse_string_to_list(strength_model_1)) | |
if lora_2 != "none": | |
output["loras"].append(lora_2) | |
if strength_lora_2 == "": | |
strength_lora_2 = "1.0" | |
output["strengths"].append(parse_string_to_list(strength_lora_2)) | |
if lora_3 != "none": | |
output["loras"].append(lora_3) | |
if strength_lora_3 == "": | |
strength_lora_3 = "1.0" | |
output["strengths"].append(parse_string_to_list(strength_lora_3)) | |
if lora_4 != "none": | |
output["loras"].append(lora_4) | |
if strength_lora_4 == "": | |
strength_lora_4 = "1.0" | |
output["strengths"].append(parse_string_to_list(strength_lora_4)) | |
return (output,) | |
class FluxSamplerParams: | |
def __init__(self): | |
self.loraloader = None | |
self.lora = (None, None) | |
def INPUT_TYPES(s): | |
return {"required": { | |
"model": ("MODEL", ), | |
"conditioning": ("CONDITIONING", ), | |
"latent_image": ("LATENT", ), | |
"seed": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "?" }), | |
"sampler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "euler" }), | |
"scheduler": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "simple" }), | |
"steps": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "20" }), | |
"guidance": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "3.5" }), | |
"max_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }), | |
"base_shift": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "" }), | |
"denoise": ("STRING", { "multiline": False, "dynamicPrompts": False, "default": "1.0" }), | |
}, | |
"optional": { | |
"loras": ("LORA_PARAMS",), | |
}} | |
RETURN_TYPES = ("LATENT","SAMPLER_PARAMS") | |
RETURN_NAMES = ("latent", "params") | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, model, conditioning, latent_image, seed, sampler, scheduler, steps, guidance, max_shift, base_shift, denoise, loras=None): | |
import random | |
import time | |
from comfy_extras.nodes_custom_sampler import Noise_RandomNoise, BasicScheduler, BasicGuider, SamplerCustomAdvanced | |
from comfy_extras.nodes_latent import LatentBatch | |
from comfy_extras.nodes_model_advanced import ModelSamplingFlux, ModelSamplingAuraFlow | |
from node_helpers import conditioning_set_values | |
from nodes import LoraLoader | |
is_schnell = model.model.model_type == comfy.model_base.ModelType.FLOW | |
noise = seed.replace("\n", ",").split(",") | |
noise = [random.randint(0, 999999) if "?" in n else int(n) for n in noise] | |
if not noise: | |
noise = [random.randint(0, 999999)] | |
if sampler == '*': | |
sampler = comfy.samplers.KSampler.SAMPLERS | |
elif sampler.startswith("!"): | |
sampler = sampler.replace("\n", ",").split(",") | |
sampler = [s.strip("! ") for s in sampler] | |
sampler = [s for s in comfy.samplers.KSampler.SAMPLERS if s not in sampler] | |
else: | |
sampler = sampler.replace("\n", ",").split(",") | |
sampler = [s.strip() for s in sampler if s.strip() in comfy.samplers.KSampler.SAMPLERS] | |
if not sampler: | |
sampler = ['ipndm'] | |
if scheduler == '*': | |
scheduler = comfy.samplers.KSampler.SCHEDULERS | |
elif scheduler.startswith("!"): | |
scheduler = scheduler.replace("\n", ",").split(",") | |
scheduler = [s.strip("! ") for s in scheduler] | |
scheduler = [s for s in comfy.samplers.KSampler.SCHEDULERS if s not in scheduler] | |
else: | |
scheduler = scheduler.replace("\n", ",").split(",") | |
scheduler = [s.strip() for s in scheduler] | |
scheduler = [s for s in scheduler if s in comfy.samplers.KSampler.SCHEDULERS] | |
if not scheduler: | |
scheduler = ['simple'] | |
if steps == "": | |
if is_schnell: | |
steps = "4" | |
else: | |
steps = "20" | |
steps = parse_string_to_list(steps) | |
denoise = "1.0" if denoise == "" else denoise | |
denoise = parse_string_to_list(denoise) | |
guidance = "3.5" if guidance == "" else guidance | |
guidance = parse_string_to_list(guidance) | |
if not is_schnell: | |
max_shift = "1.15" if max_shift == "" else max_shift | |
base_shift = "0.5" if base_shift == "" else base_shift | |
else: | |
max_shift = "0" | |
base_shift = "1.0" if base_shift == "" else base_shift | |
max_shift = parse_string_to_list(max_shift) | |
base_shift = parse_string_to_list(base_shift) | |
cond_text = None | |
if isinstance(conditioning, dict) and "encoded" in conditioning: | |
cond_text = conditioning["text"] | |
cond_encoded = conditioning["encoded"] | |
else: | |
cond_encoded = [conditioning] | |
out_latent = None | |
out_params = [] | |
basicschedueler = BasicScheduler() | |
basicguider = BasicGuider() | |
samplercustomadvanced = SamplerCustomAdvanced() | |
latentbatch = LatentBatch() | |
modelsamplingflux = ModelSamplingFlux() if not is_schnell else ModelSamplingAuraFlow() | |
width = latent_image["samples"].shape[3]*8 | |
height = latent_image["samples"].shape[2]*8 | |
lora_strength_len = 1 | |
if loras: | |
lora_model = loras["loras"] | |
lora_strength = loras["strengths"] | |
lora_strength_len = sum(len(i) for i in lora_strength) | |
if self.loraloader is None: | |
self.loraloader = LoraLoader() | |
# count total number of samples | |
total_samples = len(cond_encoded) * len(noise) * len(max_shift) * len(base_shift) * len(guidance) * len(sampler) * len(scheduler) * len(steps) * len(denoise) * lora_strength_len | |
current_sample = 0 | |
if total_samples > 1: | |
pbar = ProgressBar(total_samples) | |
lora_strength_len = 1 | |
if loras: | |
lora_strength_len = len(lora_strength[0]) | |
for los in range(lora_strength_len): | |
if loras: | |
patched_model = self.loraloader.load_lora(model, None, lora_model[0], lora_strength[0][los], 0)[0] | |
else: | |
patched_model = model | |
for i in range(len(cond_encoded)): | |
conditioning = cond_encoded[i] | |
ct = cond_text[i] if cond_text else None | |
for n in noise: | |
randnoise = Noise_RandomNoise(n) | |
for ms in max_shift: | |
for bs in base_shift: | |
if is_schnell: | |
work_model = modelsamplingflux.patch_aura(patched_model, bs)[0] | |
else: | |
work_model = modelsamplingflux.patch(patched_model, ms, bs, width, height)[0] | |
for g in guidance: | |
cond = conditioning_set_values(conditioning, {"guidance": g}) | |
guider = basicguider.get_guider(work_model, cond)[0] | |
for s in sampler: | |
samplerobj = comfy.samplers.sampler_object(s) | |
for sc in scheduler: | |
for st in steps: | |
for d in denoise: | |
sigmas = basicschedueler.get_sigmas(work_model, sc, st, d)[0] | |
current_sample += 1 | |
log = f"Sampling {current_sample}/{total_samples} with seed {n}, sampler {s}, scheduler {sc}, steps {st}, guidance {g}, max_shift {ms}, base_shift {bs}, denoise {d}" | |
lora_name = None | |
lora_str = 0 | |
if loras: | |
lora_name = lora_model[0] | |
lora_str = lora_strength[0][los] | |
log += f", lora {lora_name}, lora_strength {lora_str}" | |
logging.info(log) | |
start_time = time.time() | |
latent = samplercustomadvanced.sample(randnoise, guider, samplerobj, sigmas, latent_image)[1] | |
elapsed_time = time.time() - start_time | |
out_params.append({"time": elapsed_time, | |
"seed": n, | |
"width": width, | |
"height": height, | |
"sampler": s, | |
"scheduler": sc, | |
"steps": st, | |
"guidance": g, | |
"max_shift": ms, | |
"base_shift": bs, | |
"denoise": d, | |
"prompt": ct, | |
"lora": lora_name, | |
"lora_strength": lora_str}) | |
if out_latent is None: | |
out_latent = latent | |
else: | |
out_latent = latentbatch.batch(out_latent, latent)[0] | |
if total_samples > 1: | |
pbar.update(1) | |
return (out_latent, out_params) | |
class PlotParameters: | |
def INPUT_TYPES(s): | |
return {"required": { | |
"images": ("IMAGE", ), | |
"params": ("SAMPLER_PARAMS", ), | |
"order_by": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ), | |
"cols_value": (["none", "time", "seed", "steps", "denoise", "sampler", "scheduler", "guidance", "max_shift", "base_shift", "lora_strength"], ), | |
"cols_num": ("INT", {"default": -1, "min": -1, "max": 1024 }), | |
"add_prompt": (["false", "true", "excerpt"], ), | |
"add_params": (["false", "true", "changes only"], {"default": "true"}), | |
}} | |
RETURN_TYPES = ("IMAGE", ) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, images, params, order_by, cols_value, cols_num, add_prompt, add_params): | |
from PIL import Image, ImageDraw, ImageFont | |
import math | |
import textwrap | |
if images.shape[0] != len(params): | |
raise ValueError("Number of images and number of parameters do not match.") | |
_params = params.copy() | |
if order_by != "none": | |
sorted_params = sorted(_params, key=lambda x: x[order_by]) | |
indices = [_params.index(item) for item in sorted_params] | |
images = images[torch.tensor(indices)] | |
_params = sorted_params | |
if cols_value != "none" and cols_num > -1: | |
groups = {} | |
for p in _params: | |
value = p[cols_value] | |
if value not in groups: | |
groups[value] = [] | |
groups[value].append(p) | |
cols_num = len(groups) | |
sorted_params = [] | |
groups = list(groups.values()) | |
for g in zip(*groups): | |
sorted_params.extend(g) | |
indices = [_params.index(item) for item in sorted_params] | |
images = images[torch.tensor(indices)] | |
_params = sorted_params | |
elif cols_num == 0: | |
cols_num = int(math.sqrt(images.shape[0])) | |
cols_num = max(1, min(cols_num, 1024)) | |
width = images.shape[2] | |
out_image = [] | |
font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), min(48, int(32*(width/1024)))) | |
text_padding = 3 | |
line_height = font.getmask('Q').getbbox()[3] + font.getmetrics()[1] + text_padding*2 | |
char_width = font.getbbox('M')[2]+1 # using monospace font | |
if add_params == "changes only": | |
value_tracker = {} | |
for p in _params: | |
for key, value in p.items(): | |
if key != "time": | |
if key not in value_tracker: | |
value_tracker[key] = set() | |
value_tracker[key].add(value) | |
changing_keys = {key for key, values in value_tracker.items() if len(values) > 1 or key == "prompt"} | |
result = [] | |
for p in _params: | |
changing_params = {key: value for key, value in p.items() if key in changing_keys} | |
result.append(changing_params) | |
_params = result | |
for (image, param) in zip(images, _params): | |
image = image.permute(2, 0, 1) | |
if add_params != "false": | |
if add_params == "changes only": | |
text = "\n".join([f"{key}: {value}" for key, value in param.items() if key != "prompt"]) | |
else: | |
text = f"time: {param['time']:.2f}s, seed: {param['seed']}, steps: {param['steps']}, size: {param['width']}×{param['height']}\ndenoise: {param['denoise']}, sampler: {param['sampler']}, sched: {param['scheduler']}\nguidance: {param['guidance']}, max/base shift: {param['max_shift']}/{param['base_shift']}" | |
if 'lora' in param and param['lora']: | |
text += f"\nLoRA: {param['lora'][:32]}, str: {param['lora_strength']}" | |
lines = text.split("\n") | |
text_height = line_height * len(lines) | |
text_image = Image.new('RGB', (width, text_height), color=(0, 0, 0)) | |
for i, line in enumerate(lines): | |
draw = ImageDraw.Draw(text_image) | |
draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255)) | |
text_image = T.ToTensor()(text_image).to(image.device) | |
image = torch.cat([image, text_image], 1) | |
if 'prompt' in param and param['prompt'] and add_prompt != "false": | |
prompt = param['prompt'] | |
if add_prompt == "excerpt": | |
prompt = " ".join(param['prompt'].split()[:64]) | |
prompt += "..." | |
cols = math.ceil(width / char_width) | |
prompt_lines = textwrap.wrap(prompt, width=cols) | |
prompt_height = line_height * len(prompt_lines) | |
prompt_image = Image.new('RGB', (width, prompt_height), color=(0, 0, 0)) | |
for i, line in enumerate(prompt_lines): | |
draw = ImageDraw.Draw(prompt_image) | |
draw.text((text_padding, i * line_height + text_padding), line, font=font, fill=(255, 255, 255)) | |
prompt_image = T.ToTensor()(prompt_image).to(image.device) | |
image = torch.cat([image, prompt_image], 1) | |
# a little cleanup | |
image = torch.nan_to_num(image, nan=0.0).clamp(0.0, 1.0) | |
out_image.append(image) | |
# ensure all images have the same height | |
if add_prompt != "false" or add_params == "changes only": | |
max_height = max([image.shape[1] for image in out_image]) | |
out_image = [F.pad(image, (0, 0, 0, max_height - image.shape[1])) for image in out_image] | |
out_image = torch.stack(out_image, 0).permute(0, 2, 3, 1) | |
# merge images | |
if cols_num > -1: | |
cols = min(cols_num, out_image.shape[0]) | |
b, h, w, c = out_image.shape | |
rows = math.ceil(b / cols) | |
# Pad the tensor if necessary | |
if b % cols != 0: | |
padding = cols - (b % cols) | |
out_image = F.pad(out_image, (0, 0, 0, 0, 0, 0, 0, padding)) | |
b = out_image.shape[0] | |
# Reshape and transpose | |
out_image = out_image.reshape(rows, cols, h, w, c) | |
out_image = out_image.permute(0, 2, 1, 3, 4) | |
out_image = out_image.reshape(rows * h, cols * w, c).unsqueeze(0) | |
""" | |
width = out_image.shape[2] | |
# add the title and notes on top | |
if title and export_labels: | |
title_font = ImageFont.truetype(os.path.join(FONTS_DIR, 'ShareTechMono-Regular.ttf'), 48) | |
title_width = title_font.getbbox(title)[2] | |
title_padding = 6 | |
title_line_height = title_font.getmask(title).getbbox()[3] + title_font.getmetrics()[1] + title_padding*2 | |
title_text_height = title_line_height | |
title_text_image = Image.new('RGB', (width, title_text_height), color=(0, 0, 0, 0)) | |
draw = ImageDraw.Draw(title_text_image) | |
draw.text((width//2 - title_width//2, title_padding), title, font=title_font, fill=(255, 255, 255)) | |
title_text_image = T.ToTensor()(title_text_image).unsqueeze(0).permute([0,2,3,1]).to(out_image.device) | |
out_image = torch.cat([title_text_image, out_image], 1) | |
""" | |
return (out_image, ) | |
class GuidanceTimestepping: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ("MODEL",), | |
"value": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.05}), | |
"start_at": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.01}), | |
"end_at": ("FLOAT", {"default": 0.8, "min": 0.0, "max": 1.0, "step": 0.01}), | |
} | |
} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, model, value, start_at, end_at): | |
sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) | |
sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) | |
def apply_apg(args): | |
cond = args["cond"] | |
uncond = args["uncond"] | |
cond_scale = args["cond_scale"] | |
sigma = args["sigma"] | |
sigma = sigma.detach().cpu()[0].item() | |
if sigma <= sigma_start and sigma > sigma_end: | |
cond_scale = value | |
return uncond + (cond - uncond) * cond_scale | |
m = model.clone() | |
m.set_model_sampler_cfg_function(apply_apg) | |
return (m,) | |
class ModelSamplingDiscreteFlowCustom(torch.nn.Module): | |
def __init__(self, model_config=None): | |
super().__init__() | |
if model_config is not None: | |
sampling_settings = model_config.sampling_settings | |
else: | |
sampling_settings = {} | |
self.set_parameters(shift=sampling_settings.get("shift", 1.0), multiplier=sampling_settings.get("multiplier", 1000)) | |
def set_parameters(self, shift=1.0, timesteps=1000, multiplier=1000, cut_off=1.0, shift_multiplier=0): | |
self.shift = shift | |
self.multiplier = multiplier | |
self.cut_off = cut_off | |
self.shift_multiplier = shift_multiplier | |
ts = self.sigma((torch.arange(1, timesteps + 1, 1) / timesteps) * multiplier) | |
self.register_buffer('sigmas', ts) | |
def sigma_min(self): | |
return self.sigmas[0] | |
def sigma_max(self): | |
return self.sigmas[-1] | |
def timestep(self, sigma): | |
return sigma * self.multiplier | |
def sigma(self, timestep): | |
shift = self.shift | |
if timestep.dim() == 0: | |
t = timestep.cpu().item() / self.multiplier | |
if t <= self.cut_off: | |
shift = shift * self.shift_multiplier | |
return comfy.model_sampling.time_snr_shift(shift, timestep / self.multiplier) | |
def percent_to_sigma(self, percent): | |
if percent <= 0.0: | |
return 1.0 | |
if percent >= 1.0: | |
return 0.0 | |
return 1.0 - percent | |
class ModelSamplingSD3Advanced: | |
def INPUT_TYPES(s): | |
return {"required": { "model": ("MODEL",), | |
"shift": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step":0.01}), | |
"cut_off": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step":0.05}), | |
"shift_multiplier": ("FLOAT", {"default": 2, "min": 0, "max": 10, "step":0.05}), | |
}} | |
RETURN_TYPES = ("MODEL",) | |
FUNCTION = "execute" | |
CATEGORY = "essentials/sampling" | |
def execute(self, model, shift, multiplier=1000, cut_off=1.0, shift_multiplier=0): | |
m = model.clone() | |
sampling_base = ModelSamplingDiscreteFlowCustom | |
sampling_type = comfy.model_sampling.CONST | |
class ModelSamplingAdvanced(sampling_base, sampling_type): | |
pass | |
model_sampling = ModelSamplingAdvanced(model.model.model_config) | |
model_sampling.set_parameters(shift=shift, multiplier=multiplier, cut_off=cut_off, shift_multiplier=shift_multiplier) | |
m.add_object_patch("model_sampling", model_sampling) | |
return (m, ) | |
SAMPLING_CLASS_MAPPINGS = { | |
"KSamplerVariationsStochastic+": KSamplerVariationsStochastic, | |
"KSamplerVariationsWithNoise+": KSamplerVariationsWithNoise, | |
"InjectLatentNoise+": InjectLatentNoise, | |
"FluxSamplerParams+": FluxSamplerParams, | |
"GuidanceTimestepping+": GuidanceTimestepping, | |
"PlotParameters+": PlotParameters, | |
"TextEncodeForSamplerParams+": TextEncodeForSamplerParams, | |
"SamplerSelectHelper+": SamplerSelectHelper, | |
"SchedulerSelectHelper+": SchedulerSelectHelper, | |
"LorasForFluxParams+": LorasForFluxParams, | |
"ModelSamplingSD3Advanced+": ModelSamplingSD3Advanced, | |
} | |
SAMPLING_NAME_MAPPINGS = { | |
"KSamplerVariationsStochastic+": "🔧 KSampler Stochastic Variations", | |
"KSamplerVariationsWithNoise+": "🔧 KSampler Variations with Noise Injection", | |
"InjectLatentNoise+": "🔧 Inject Latent Noise", | |
"FluxSamplerParams+": "🔧 Flux Sampler Parameters", | |
"GuidanceTimestepping+": "🔧 Guidance Timestep (experimental)", | |
"PlotParameters+": "🔧 Plot Sampler Parameters", | |
"TextEncodeForSamplerParams+": "🔧Text Encode for Sampler Params", | |
"SamplerSelectHelper+": "🔧 Sampler Select Helper", | |
"SchedulerSelectHelper+": "🔧 Scheduler Select Helper", | |
"LorasForFluxParams+": "🔧 LoRA for Flux Parameters", | |
"ModelSamplingSD3Advanced+": "🔧 Model Sampling SD3 Advanced", | |
} |